/Papers-in-100-Lines-of-Code

Implementation of papers in 100 lines of code.

Primary LanguagePythonMIT LicenseMIT

Papers in 100 Lines of Code

Implementation of papers in 100 lines of code.

Implemented papers

[Auto-Encoding Variational Bayes]
  • Auto-Encoding Variational Bayes [arXiv]
  • Diederik P Kingma, Max Welling
  • 2013-12-20
[Generative Adversarial Networks]
  • Generative Adversarial Networks [arXiv]
  • Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio
  • 2014-06-10
[NICE: Non-linear Independent Components Estimation]
  • NICE: Non-linear Independent Components Estimation [arXiv]
  • Laurent Dinh, David Krueger, Yoshua Bengio
  • 2014-10-30
[Variational Inference with Normalizing Flows]
  • Variational Inference with Normalizing Flows [arXiv]
  • Danilo Jimenez Rezende, Shakir Mohamed
  • 2015-05-21
[Least Squares Generative Adversarial Networks]
  • Least Squares Generative Adversarial Networks [arXiv]
  • Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, Stephen Paul Smolley
  • 2016-11-13
[Sequential Neural Likelihood]
  • Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows [arXiv]
  • George Papamakarios, David C. Sterratt, Iain Murray
  • 2018-05-18
[Optimizing Millions of Hyperparameters by Implicit Differentiation]
  • Optimizing Millions of Hyperparameters by Implicit Differentiation [PMLR]
  • Jonathan Lorraine, Paul Vicol, David Duvenaud
  • 2019-10-06
[Implicit Neural Representations with Periodic Activation Functions]
  • Implicit Neural Representations with Periodic Activation Functions [arXiv]
  • Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, Gordon Wetzstein
  • 2020-06-17
[Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains]
  • Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains [arXiv]
  • Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, Ren Ng
  • 2020-06-18
[Likelihood-free MCMC with Amortized Approximate Ratio Estimators]
  • Likelihood-free MCMC with Amortized Approximate Ratio Estimators [PMLR]
  • Joeri Hermans, Volodimir Begy, Gilles Louppe
  • 2020-06-26
[NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis]
  • NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis [arXiv]
  • Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng
  • 2020-08-03
[Multiplicative Filter Networks]
  • Multiplicative Filter Networks [OpenReview]
  • Rizal Fathony, Anit Kumar Sahu, Devin Willmott, J Zico Kolter
  • 2020-09-28
[Gromov-Wasserstein Distances between Gaussian Distributions]
  • Gromov-Wasserstein Distances between Gaussian Distributions [arXiv]
  • Antoine Salmona, Julie Delon, Agnès Desolneux
  • 2021-08-16