/FDARN

Primary LanguagePython

Cross-Modal Federated Human Activity Recognition via Modality-Agnostic and Modality-Specific Representation Learning

Software requirements

  • numpy, scipy, torch, Pillow, matplotlib

  • To download the dependencies: pip3 install -r requirements.txt

  • Training requires minimum 12 GB of GPU memory for batch size of 32.

Produce experiments

  • There is a main file "main.py" which allows running all experiments.
  • The network is under the FLAlgorithms/users folder, marked as userfdarn.py.
  • It is noted that algorithm should be run at least 5 times and then the results are averaged.
  • To run training simply run
python main.py --dataset Epic --model dnn --batch_size 64 --learning_rate 0.001 --num_global_iters 300 --local_epochs 2 --algorithm FDARN --times 5
python main.py --dataset MM --model dnn --batch_size 32 --learning_rate 0.01 --num_global_iters 300 --local_epochs 2 --algorithm FDARN --times 5
python main.py --dataset ECM --model dnn --batch_size 32 --learning_rate 0.01 --num_global_iters 300 --local_epochs 2 --algorithm FDARN --times 5
python main.py --dataset Ego-exo --model dnn --batch_size 32 --learning_rate 0.01 --num_global_iters 300 --local_epochs 2 --algorithm FDARN --times 5

Datasets

  • Data should be placed under data/ folder.
  • Epic-Kitchens, Multimodal-EA and Stanford-ECM are all public datasets.
  • Ego-Exo-AR dataset is available to download at: https://drive.google.com/file/d/13HvPVGQE3Lm6ovKzVCGipxAUOmDdsJU0/view?usp=sharing (To protect user privacy, we only provide image features instead of original images.)
  • On the Epic-Kitchens dataset, we use 4 modalities (i.e., video, optical flow, audio and sensor) as input.
  • On the Multimodal-EA dataset, we use 2 modalities (i.e., video and sensor) as input.
  • On the Stanford-ECM dataset, we use 2 modalities (i.e., video and sensor) as input.
  • On the Ego-Exo-AR dataset, we use 2 modalities (i.e., image and sensor) as input.
  • Please refer to the PDF file in Supplementary Material for details of data statistics and feature extraction.