This library provides an object type which efficiently represents an array of booleans. Bitarrays are sequence types and behave very much like usual lists. Eight bits are represented by one byte in a contiguous block of memory. The user can select between two representations: little-endian and big-endian. All functionality is implemented in C. Methods for accessing the machine representation are provided, including the ability to import and export buffers. This allows creating bitarrays that are mapped to other objects, including memory-mapped files.
- The bit endianness can be specified for each bitarray object, see below.
- Sequence methods: slicing (including slice assignment and deletion),
operations
+,*,+=,*=, theinoperator,len() - Fast methods for encoding and decoding variable bit length prefix codes.
- Bitwise operations:
~,&,|,^,<<,>>(as well as their in-place versions&=,|=,^=,<<=,>>=). - Packing and unpacking to other binary data formats, e.g.
numpy.ndarray. - Bitarray objects support the buffer protocol (both importing and exporting buffers).
frozenbitarrayobjects which are hashable- Pickling and unpickling of bitarray objects.
- Sequential search
- Extensive test suite with over 400 unittests.
- Utility module
bitarray.util:- conversion to hexadecimal string
- serialization
- pretty printing
- conversion to integers
- creating Huffman codes
- various count functions
- other helpful functions
If you have a working C compiler, you can simply:
$ pip install bitarray
If you rather want to use precompiled binaries, you can:
conda install bitarray(both the default Anaconda repository as well as conda-forge support bitarray)- download Windows wheels from Chris Gohlke
Once you have installed the package, you may want to test it:
$ python -c 'import bitarray; bitarray.test()'
bitarray is installed in: /Users/ilan/bitarray/bitarray
bitarray version: 2.3.4
sys.version: 2.7.15 (default, Mar 5 2020, 14:58:04) [GCC Clang 9.0.1]
sys.prefix: /Users/ilan/Mini3/envs/py27
pointer size: 64 bit
sizeof(size_t): 8
sizeof(bitarrayobject): 80
PY_UINT64_T defined: 1
DEBUG: 0
.........................................................................
.........................................................................
................................................................
----------------------------------------------------------------------
Ran 407 tests in 0.483s
OK
You can always import the function test,
and test().wasSuccessful() will return True when the test went well.
As mentioned above, bitarray objects behave very much like lists, so there is not too much to learn. The biggest difference from list objects (except that bitarray are obviously homogeneous) is the ability to access the machine representation of the object. When doing so, the bit endianness is of importance; this issue is explained in detail in the section below. Here, we demonstrate the basic usage of bitarray objects:
>>> from bitarray import bitarray
>>> a = bitarray() # create empty bitarray
>>> a.append(1)
>>> a.extend([1, 0])
>>> a
bitarray('110')
>>> x = bitarray(2 ** 20) # bitarray of length 1048576 (uninitialized)
>>> len(x)
1048576
>>> bitarray('1001 011') # initialize from string (whitespace is ignored)
bitarray('1001011')
>>> lst = [1, 0, False, True, True]
>>> a = bitarray(lst) # initialize from iterable
>>> a
bitarray('10011')
>>> a.count(1)
3
>>> a.remove(0) # removes first occurrence of 0
>>> a
bitarray('1011')Like lists, bitarray objects support slice assignment and deletion:
>>> a = bitarray(50)
>>> a.setall(0) # set all elements in a to 0
>>> a[11:37:3] = 9 * bitarray('1')
>>> a
bitarray('00000000000100100100100100100100100100000000000000')
>>> del a[12::3]
>>> a
bitarray('0000000000010101010101010101000000000')
>>> a[-6:] = bitarray('10011')
>>> a
bitarray('000000000001010101010101010100010011')
>>> a += bitarray('000111')
>>> a[9:]
bitarray('001010101010101010100010011000111')In addition, slices can be assigned to booleans, which is easier (and faster) than assigning to a bitarray in which all values are the same:
>>> a = 20 * bitarray('0')
>>> a[1:15:3] = True
>>> a
bitarray('01001001001001000000')This is easier and faster than:
>>> a = 20 * bitarray('0')
>>> a[1:15:3] = 5 * bitarray('1')
>>> a
bitarray('01001001001001000000')Note that in the latter we have to create a temporary bitarray whose length must be known or calculated. Another example of assigning slices to Booleans, is setting ranges:
>>> a = bitarray(30)
>>> a[:] = 0 # set all elements to 0 - equivalent to a.setall(0)
>>> a[10:25] = 1 # set elements in range(10, 25) to 1
>>> a
bitarray('000000000011111111111111100000')Bitarray objects support the bitwise operators ~, &, |, ^,
<<, >> (as well as their in-place versions &=, |=, ^=,
<<=, >>=). The behavior is very much what one would expect:
>>> a = bitarray('101110001')
>>> ~a # invert
bitarray('010001110')
>>> b = bitarray('111001011')
>>> a ^ b
bitarray('010111010')
>>> a &= b
>>> a
bitarray('101000001')
>>> a <<= 2 # in-place left shift by 2
>>> a
bitarray('100000100')
>>> b >> 1
bitarray('011100101')The C language does not specify the behavior of negative shifts and of left shifts larger or equal than the width of the promoted left operand. The exact behavior is compiler/machine specific. This Python bitarray library specifies the behavior as follows:
- the length of the bitarray is never changed by any shift operation
- blanks are filled by 0
- negative shifts raise
ValueError - shifts larger or equal to the length of the bitarray result in bitarrays with all values 0
Unless explicitly converting to machine representation, using
the .tobytes(), .frombytes(), .tofile() and .fromfile()
methods, as well as using memoryview, the bit endianness will have no
effect on any computation, and one can skip this section.
Since bitarrays allows addressing individual bits, where the machine represents 8 bits in one byte, there are two obvious choices for this mapping: little-endian and big-endian.
When dealing with the machine representation of bitarray objects, it is recommended to always explicitly specify the endianness.
By default, bitarrays use big-endian representation:
>>> a = bitarray()
>>> a.endian()
'big'
>>> a.frombytes(b'A')
>>> a
bitarray('01000001')
>>> a[6] = 1
>>> a.tobytes()
b'C'Big-endian means that the most-significant bit comes first.
Here, a[0] is the lowest address (index) and most significant bit,
and a[7] is the highest address and least significant bit.
When creating a new bitarray object, the endianness can always be specified explicitly:
>>> a = bitarray(endian='little')
>>> a.frombytes(b'A')
>>> a
bitarray('10000010')
>>> a.endian()
'little'Here, the low-bit comes first because little-endian means that increasing
numeric significance corresponds to an increasing address.
So a[0] is the lowest address and least significant bit,
and a[7] is the highest address and most significant bit.
The bit endianness is a property of the bitarray object. The endianness cannot be changed once a bitarray object is created. When comparing bitarray objects, the endianness (and hence the machine representation) is irrelevant; what matters is the mapping from indices to bits:
>>> bitarray('11001', endian='big') == bitarray('11001', endian='little')
TrueBitwise operations (|, ^, &=, |=, ^=, ~) are
implemented efficiently using the corresponding byte operations in C, i.e. the
operators act on the machine representation of the bitarray objects.
Therefore, it is not possible to perform bitwise operators on bitarrays
with different endianness.
When converting to and from machine representation, using
the .tobytes(), .frombytes(), .tofile() and .fromfile()
methods, the endianness matters:
>>> a = bitarray(endian='little')
>>> a.frombytes(b'\x01')
>>> a
bitarray('10000000')
>>> b = bitarray(endian='big')
>>> b.frombytes(b'\x80')
>>> b
bitarray('10000000')
>>> a == b
True
>>> a.tobytes() == b.tobytes()
FalseAs mentioned above, the endianness can not be changed once an object is created. However, you can create a new bitarray with different endianness:
>>> a = bitarray('111000', endian='little')
>>> b = bitarray(a, endian='big')
>>> b
bitarray('111000')
>>> a == b
TrueBitarray objects support the buffer protocol. They can both export their own buffer, as well as import another object's buffer. To learn more about this topic, please read buffer protocol. There is also an example that shows how to memory-map a file to a bitarray: mmapped-file.py
The .encode() method takes a dictionary mapping symbols to bitarrays
and an iterable, and extends the bitarray object with the encoded symbols
found while iterating. For example:
>>> d = {'H':bitarray('111'), 'e':bitarray('0'),
... 'l':bitarray('110'), 'o':bitarray('10')}
...
>>> a = bitarray()
>>> a.encode(d, 'Hello')
>>> a
bitarray('111011011010')Note that the string 'Hello' is an iterable, but the symbols are not
limited to characters, in fact any immutable Python object can be a symbol.
Taking the same dictionary, we can apply the .decode() method which will
return a list of the symbols:
>>> a.decode(d)
['H', 'e', 'l', 'l', 'o']
>>> ''.join(a.decode(d))
'Hello'Since symbols are not limited to being characters, it is necessary to return
them as elements of a list, rather than simply returning the joined string.
The above dictionary d can be efficiently constructed using the function
bitarray.util.huffman_code(). I also wrote Huffman coding in Python
using bitarray for more
background information.
When the codes are large, and you have many decode calls, most time will
be spent creating the (same) internal decode tree objects. In this case,
it will be much faster to create a decodetree object, which can be
passed to bitarray's .decode() and .iterdecode() methods, instead
of passing the prefix code dictionary to those methods itself:
>>> from bitarray import bitarray, decodetree
>>> t = decodetree({'a': bitarray('0'), 'b': bitarray('1')})
>>> a = bitarray('0110')
>>> a.decode(t)
['a', 'b', 'b', 'a']
>>> ''.join(a.iterdecode(t))
'abba'The decodetree object is immutable and unhashable, and it's sole purpose
is to be passed to bitarray's .decode() and .iterdecode() methods.
A frozenbitarray object is very similar to the bitarray object.
The difference is that this a frozenbitarray is immutable, and hashable,
and can therefore be used as a dictionary key:
>>> from bitarray import frozenbitarray
>>> key = frozenbitarray('1100011')
>>> {key: 'some value'}
{frozenbitarray('1100011'): 'some value'}
>>> key[3] = 1
Traceback (most recent call last):
...
TypeError: frozenbitarray is immutablebitarray version: 2.3.4 -- change log
In the following, item and value are usually a single bit -
an integer 0 or 1.
bitarray(initializer=0, /, endian='big', buffer=None)-> bitarrayReturn a new bitarray object whose items are bits initialized from the optional initial object, and endianness. The initializer may be of the following types:
int: Create a bitarray of given integer length. The initial values are uninitialized.str: Create bitarray from a string of0and1.iterable: Create bitarray from iterable or sequence or integers 0 or 1.Optional keyword arguments:
endian: Specifies the bit endianness of the created bitarray object. Allowed values arebigandlittle(the default isbig). The bit endianness effects the buffer representation of the bitarray.buffer: Any object which exposes a buffer. When provided,initializercannot be present (or has to beNone). The imported buffer may be readonly or writable, depending on the object type.New in version 2.3: optional
bufferargument.
A bitarray object supports the following methods:
all()-> bool- Return True when all bits in the array are True.
Note that
a.all()is faster thanall(a). any()-> bool- Return True when any bit in the array is True.
Note that
a.any()is faster thanany(a). append(item, /)- Append
itemto the end of the bitarray. buffer_info()-> tupleReturn a tuple containing:
- memory address of buffer
- buffer size (in bytes)
- bit endianness as a string
- number of unused padding bits
- allocated memory for the buffer (in bytes)
- memory is read-only
- buffer is imported
- number of buffer exports
bytereverse(start=0, stop=<end of buffer>, /)Reverse the bit order for the bytes in range(start, stop) in-place. The start and stop indices are given in terms of bytes (not bits). By default, all bytes in the buffer are reversed. Note: This method only changes the buffer; it does not change the endianness of the bitarray object.
New in version 2.2.5: optional
startandstoparguments.clear()Remove all items from the bitarray.
New in version 1.4.
copy()-> bitarray- Return a copy of the bitarray.
count(value=1, start=0, stop=<end of array>, /)-> intCount the number of occurrences of
valuein the bitarray.New in version 1.1.0: optional
startandstoparguments.decode(code, /)-> list- Given a prefix code (a dict mapping symbols to bitarrays, or
decodetreeobject), decode the content of the bitarray and return it as a list of symbols. encode(code, iterable, /)- Given a prefix code (a dict mapping symbols to bitarrays), iterate over the iterable object with symbols, and extend the bitarray with the corresponding bitarray for each symbol.
endian()-> str- Return the bit endianness of the bitarray as a string (
littleorbig). extend(iterable, /)- Append all items from
iterableto the end of the bitarray. If the iterable is a string, each0and1are appended as bits (ignoring whitespace and underscore). fill()-> int- Add zeros to the end of the bitarray, such that the length of the bitarray will be a multiple of 8, and return the number of bits added (0..7).
find(sub_bitarray, start=0, stop=<end of array>, /)-> intReturn the lowest index where sub_bitarray is found, such that sub_bitarray is contained within
[start:stop]. Return -1 when sub_bitarray is not found.New in version 2.1.
frombytes(bytes, /)- Extend bitarray with raw bytes. That is, each append byte will add eight bits to the bitarray.
fromfile(f, n=-1, /)- Extend bitarray with up to n bytes read from the file object f.
When n is omitted or negative, reads all data until EOF.
When n is provided and positive but exceeds the data available,
EOFErroris raised (but the available data is still read and appended. index(sub_bitarray, start=0, stop=<end of array>, /)-> int- Return the lowest index where sub_bitarray is found, such that sub_bitarray
is contained within
[start:stop]. RaisesValueErrorwhen the sub_bitarray is not present. insert(index, value, /)- Insert
valueinto the bitarray beforeindex. invert(index=<all bits>, /)Invert all bits in the array (in-place). When the optional
indexis given, only invert the single bit at index.New in version 1.5.3: optional
indexargument.iterdecode(code, /)-> iterator- Given a prefix code (a dict mapping symbols to bitarrays, or
decodetreeobject), decode the content of the bitarray and return an iterator over the symbols. itersearch(sub_bitarray, /)-> iterator- Searches for the given sub_bitarray in self, and return an iterator over the start positions where bitarray matches self.
pack(bytes, /)- Extend the bitarray from bytes, where each byte corresponds to a single
bit. The byte
b'\x00'maps to bit 0 and all other characters map to bit 1. This method, as well as the unpack method, are meant for efficient transfer of data between bitarray objects to other python objects (for example NumPy's ndarray object) which have a different memory view. pop(index=-1, /)-> item- Return the i-th (default last) element and delete it from the bitarray.
Raises
IndexErrorif bitarray is empty or index is out of range. remove(value, /)- Remove the first occurrence of
valuein the bitarray. RaisesValueErrorif item is not present. reverse()- Reverse all bits in the array (in-place).
search(sub_bitarray, limit=<none>, /)-> list- Searches for the given sub_bitarray in self, and return the list of start positions. The optional argument limits the number of search results to the integer specified. By default, all search results are returned.
setall(value, /)- Set all elements in the bitarray to
value. Note thata.setall(value)is equivalent toa[:] = value. sort(reverse=False)- Sort the bits in the array (in-place).
to01()-> str- Return a string containing '0's and '1's, representing the bits in the bitarray.
tobytes()-> bytes- Return the byte representation of the bitarray.
tofile(f, /)- Write the byte representation of the bitarray to the file object f.
tolist()-> list- Return a list with the items (0 or 1) in the bitarray. Note that the list object being created will require 32 or 64 times more memory (depending on the machine architecture) than the bitarray object, which may cause a memory error if the bitarray is very large.
unpack(zero=b'\x00', one=b'\x01')-> bytes- Return bytes containing one character for each bit in the bitarray, using the specified mapping.
frozenbitarray(initializer=0, /, endian='big', buffer=None)-> frozenbitarrayReturn a frozenbitarray object, which is initialized the same way a bitarray object is initialized. A frozenbitarray is immutable and hashable. Its contents cannot be altered after it is created; however, it can be used as a dictionary key.
New in version 1.1.
decodetree(code, /)-> decodetreeGiven a prefix code (a dict mapping symbols to bitarrays), create a binary tree object to be passed to
.decode()or.iterdecode().New in version 1.6.
bits2bytes(n, /)-> int- Return the number of bytes necessary to store n bits.
get_default_endian()-> stringReturn the default endianness for new bitarray objects being created. Unless
_set_default_endian()is called, the return value isbig.New in version 1.3.
test(verbosity=1, repeat=1)-> TextTestResult- Run self-test, and return unittest.runner.TextTestResult object.
This sub-module was add in version 1.2.
zeros(length, /, endian=None)-> bitarray- Create a bitarray of length, with all values 0, and optional endianness, which may be 'big', 'little'.
urandom(length, /, endian=None)-> bitarrayReturn a bitarray of
lengthrandom bits (usesos.urandom).New in version 1.7.
pprint(bitarray, /, stream=None, group=8, indent=4, width=80)Prints the formatted representation of object on
stream, followed by a newline. IfstreamisNone,sys.stdoutis used. By default, elements are grouped in bytes (8 elements), and 8 bytes (64 elements) per line. Non-bitarray objects are printed by the standard library functionpprint.pprint().New in version 1.8.
make_endian(bitarray, /, endian)-> bitarrayWhen the endianness of the given bitarray is different from
endian, return a new bitarray, with endiannessendianand the same elements as the original bitarray. Otherwise (endianness is alreadyendian) the original bitarray is returned unchanged.New in version 1.3.
rindex(bitarray, value=1, start=0, stop=<end of array>, /)-> intReturn the rightmost (highest) index of
valuein bitarray. RaisesValueErrorif the value is not present.New in version 2.3.0: optional
startandstoparguments.strip(bitarray, /, mode='right')-> bitarray- Return a new bitarray with zeros stripped from left, right or both ends.
Allowed values for mode are the strings:
left,right,both count_n(a, n, /)-> int- Return lowest index
ifor whicha[:i].count() == n. RaisesValueError, when n exceeds total count (a.count()). parity(a, /)-> intReturn the parity of bitarray
a. This is equivalent toa.count() % 2(but more efficient).New in version 1.9.
count_and(a, b, /)-> int- Return
(a & b).count()in a memory efficient manner, as no intermediate bitarray object gets created. count_or(a, b, /)-> int- Return
(a | b).count()in a memory efficient manner, as no intermediate bitarray object gets created. count_xor(a, b, /)-> int- Return
(a ^ b).count()in a memory efficient manner, as no intermediate bitarray object gets created. subset(a, b, /)-> bool- Return
Trueif bitarrayais a subset of bitarrayb.subset(a, b)is equivalent to(a & b).count() == a.count()but is more efficient since we can stop as soon as one mismatch is found, and no intermediate bitarray object gets created. ba2hex(bitarray, /)-> hexstr- Return a string containing the hexadecimal representation of the bitarray (which has to be multiple of 4 in length).
hex2ba(hexstr, /, endian=None)-> bitarray- Bitarray of hexadecimal representation. hexstr may contain any number (including odd numbers) of hex digits (upper or lower case).
ba2base(n, bitarray, /)-> strReturn a string containing the base
nASCII representation of the bitarray. Allowed values fornare 2, 4, 8, 16, 32 and 64. The bitarray has to be multiple of length 1, 2, 3, 4, 5 or 6 respectively. Forn=16(hexadecimal),ba2hex()will be much faster, asba2base()does not take advantage of byte level operations. Forn=32the RFC 4648 Base32 alphabet is used, and forn=64the standard base 64 alphabet is used.See also: Bitarray representations
New in version 1.9.
base2ba(n, asciistr, /, endian=None)-> bitarrayBitarray of the base
nASCII representation. Allowed values fornare 2, 4, 8, 16, 32 and 64. Forn=16(hexadecimal),hex2ba()will be much faster, asbase2ba()does not take advantage of byte level operations. Forn=32the RFC 4648 Base32 alphabet is used, and forn=64the standard base 64 alphabet is used.See also: Bitarray representations
New in version 1.9.
ba2int(bitarray, /, signed=False)-> int- Convert the given bitarray to an integer.
The bit-endianness of the bitarray is respected.
signedindicates whether two's complement is used to represent the integer. int2ba(int, /, length=None, endian=None, signed=False)-> bitarray- Convert the given integer to a bitarray (with given endianness,
and no leading (big-endian) / trailing (little-endian) zeros), unless
the
lengthof the bitarray is provided. AnOverflowErroris raised if the integer is not representable with the given number of bits.signeddetermines whether two's complement is used to represent the integer, and requireslengthto be provided. serialize(bitarray, /)-> bytesReturn a serialized representation of the bitarray, which may be passed to
deserialize(). It efficiently represents the bitarray object (including its endianness) and is guaranteed not to change in future releases.See also: Bitarray representations
New in version 1.8.
deserialize(bytes, /)-> bitarrayReturn a bitarray given the bytes representation returned by
serialize().See also: Bitarray representations
New in version 1.8.
vl_encode(bitarray, /)-> bytesReturn variable length binary representation of bitarray. This representation is useful for efficiently storing small bitarray in a binary stream. Use
vl_decode()for decoding.See also: Variable length bitarray format
New in version 2.2.
vl_decode(stream, /, endian=None)-> bitarrayDecode binary stream (an integer iterator, or bytes object), and return the decoded bitarray. This function consumes only one bitarray and leaves the remaining stream untouched.
StopIterationis raised when no terminating byte is found. Usevl_encode()for encoding.See also: Variable length bitarray format
New in version 2.2.
huffman_code(dict, /, endian=None)-> dict- Given a frequency map, a dictionary mapping symbols to their frequency,
calculate the Huffman code, i.e. a dict mapping those symbols to
bitarrays (with given endianness). Note that the symbols are not limited
to being strings. Symbols may may be any hashable object (such as
None).