Generate text using LLMs with customizable prompts
Install with your favorite plugin manager, e.g. lazy.nvim
Example with Lazy
-- Minimal configuration
{ "David-Kunz/gen.nvim" },
-- Custom Parameters (with defaults)
{
"David-Kunz/gen.nvim",
opts = {
model = "mistral", -- The default model to use.
host = "localhost", -- The host running the Ollama service.
port = "11434", -- The port on which the Ollama service is listening.
quit_map = "q", -- set keymap for close the response window
retry_map = "<c-r>", -- set keymap to re-send the current prompt
init = function(options) pcall(io.popen, "ollama serve > /dev/null 2>&1 &") end,
-- Function to initialize Ollama
command = function(options)
local body = {model = options.model, stream = true}
return "curl --silent --no-buffer -X POST http://" .. options.host .. ":" .. options.port .. "/api/chat -d $body"
end,
-- The command for the Ollama service. You can use placeholders $prompt, $model and $body (shellescaped).
-- This can also be a command string.
-- The executed command must return a JSON object with { response, context }
-- (context property is optional).
-- list_models = '<omitted lua function>', -- Retrieves a list of model names
display_mode = "float", -- The display mode. Can be "float" or "split" or "horizontal-split".
show_prompt = false, -- Shows the prompt submitted to Ollama.
show_model = false, -- Displays which model you are using at the beginning of your chat session.
no_auto_close = false, -- Never closes the window automatically.
debug = false -- Prints errors and the command which is run.
}
},
Here are all available models.
Alternatively, you can call the setup
function:
require('gen').setup({
-- same as above
})
Use command Gen
to generate text based on predefined and customizable prompts.
Example key maps:
vim.keymap.set({ 'n', 'v' }, '<leader>]', ':Gen<CR>')
You can also directly invoke it with one of the predefined prompts or your custom prompts:
vim.keymap.set('v', '<leader>]', ':Gen Enhance_Grammar_Spelling<CR>')
Once a conversation is started, the whole context is sent to the LLM. That allows you to ask follow-up questions with
:Gen Chat
and once the window is closed, you start with a fresh conversation.
You can select a model from a list of all installed models with
require('gen').select_model()
All prompts are defined in require('gen').prompts
, you can enhance or modify them.
Example:
require('gen').prompts['Elaborate_Text'] = {
prompt = "Elaborate the following text:\n$text",
replace = true
}
require('gen').prompts['Fix_Code'] = {
prompt = "Fix the following code. Only ouput the result in format ```$filetype\n...\n```:\n```$filetype\n$text\n```",
replace = true,
extract = "```$filetype\n(.-)```"
}
You can use the following properties per prompt:
prompt
: (string | function) Prompt either as a string or a function which should return a string. The result can use the following placeholders:$text
: Visually selected text$filetype
: File type of the buffer (e.g.javascript
)$input
: Additional user input$register
: Value of the unnamed register (yanked text)
replace
:true
if the selected text shall be replaced with the generated outputextract
: Regular expression used to extract the generated resultmodel
: The model to use, e.g.zephyr
, default:mistral
User selections can be delegated to Telescope with telescope-ui-select.