/IAM-powersystemmodel-linkage

This repository contains a script that can be used to facilitate the data workflow for soft-linking of global IAMs and global power system models.

Primary LanguageJupyter NotebookMIT LicenseMIT

IAM - Power System Model soft-link

This repository contains a script that can be used to facilitate the data workflow for soft-linking of global IAMs and global power system models.

License

Copyright (c) 2022 Maarten Brinkerink

This work is released under the MIT license. License

Overview

This repository contains the script as developed for the following manuscript:

Brinkerink, M, Zakeri, B, Huppmann, D, Glynn, J, Ó Gallachóir, B, & Deane, P (2022).
Assessing global climate change mitigation scenarios from a power system perspective using a novel multi-model framework.
Environmental Modelling & Software 150: 105336. doi: https://doi.org/10.1016/j.envsoft.2022.105336

Furthermore, use of the script requires appropriate credit to be given to the following manuscripts and sources as used for the workflow:

BP (2021). Statistical Review of World Energy 2021. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html

Brinkerink M, Gallachóir BÓ, Deane P (2021).
Building and Calibrating a Country-Level Detailed Global Electricity Model Based on Public Data.
Energy Strategy Reviews 33: 100592.
doi: https://doi.org/10.1016/j.esr.2020.100592

Brinkerink M, Deane P (2020).
PLEXOS World 2015.
Harvard Dataverse, V6, UNF:6:fyT1L5t+sHlvSHolxelaVg== [fileUNF].
doi: https://doi.org/10.7910/DVN/CBYXBY

Crespo Cuaresma J (2017).
Income projections for climate change research: A framework based on human capital dynamics.
Global Environmental Change 42: 226–236.
doi: https://doi.org/10.1016/j.gloenvcha.2015.02.012

Dellink R, Chateau J, Lanzi E, et al (2017).
Long-term economic growth projections in the Shared Socioeconomic Pathways.
Global Environmental Change 42: 200–214.
doi: https://doi.org/10.1016/j.gloenvcha.2015.06.004

Ember (2021). European Electricity Generation https://ember-climate.org/european-electricity-transition/

Gidden M, Huppmann D (2019).
pyam: a Python Package for the Analysis and Visualization of Models of the Interaction of Climate, Human, and Environmental Systems.
Journal of Open Source Software 4: 1095.
doi: https://doi.org/10.21105/joss.01095

Huppmann D, Kriegler E, Krey V, et al (2018).
IAMC 1.5°C Scenario Explorer and Data hosted by IIASA.
Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis.
doi: https://doi.org/10.22022/SR15/08-2018.15429

Jiang L, O’Neill BC (2017).
Global urbanization projections for the Shared Socioeconomic Pathways.
Global Environmental Change 42: 193–199.
doi: https://doi.org/10.1016/j.gloenvcha.2015.03.008

KC S, Lutz W (2017).
The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100.
Global Environmental Change 42: 181–192.
doi: https://doi.org/10.1016/j.gloenvcha.2014.06.004

Leimbach M, Kriegler E, Roming N, et al (2017).
Future growth patterns of world regions – A GDP scenario approach.
Global Environmental Change 42: 215–225.
doi: https://doi.org/10.1016/j.gloenvcha.2015.02.005

Riahi K, van Vuuren DP, Kriegler E, et al (2017).
The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview.
Global Environmental Change 42: 153–168.
doi: https://doi.org/10.1016/j.gloenvcha.2016.05.009

Ritchie H, Roser M (2020).
"Energy"
Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/energy' [Online Resource]

Sadovskaia K, Bogdanov D, Honkapuro S, et al (2019).
Power transmission and distribution losses – A model based on available empirical data and future trends for all countries globally.
International Journal of Electrical Power and Energy Systems 107: 98–109.
doi: https://doi.org/10.1016/j.ijepes.2018.11.012

Toktarova A, Gruber L, Hlusiak M, et al (2019).
Long term load projection in high resolution for all countries globally.
International Journal of Electrical Power and Energy Systems 111: 160–181.
doi: https://doi.org/10.1016/j.ijepes.2019.03.055

Install requirements

To install the required dependencies for running this workflow run:

pip install -r requirements.txt

Acknowledgements

Part of the research was developed in the Young Scientists Summer Program at the International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria).