Library for parsing yaml config files in ML training pipelines. Based on Artur Kuzin talk "DL Pipelines tips & tricks".
- Config files have yaml format.
- All parameters in python code have form 'cfg.par_name'.
- Any parameter could be set in command line prompt.
-
Default config file is set during initialization:
yconf = YamlPyConfig('default_config', , conf_path='./configs')
- Config file 'default_config.yaml' should be placed in './configs' folder.
python train_example.py
-
Custom config file could be set with parameter --config:
python train_example.py --config custom_config
-
Custom parameters could be set with appropriate keys:
python train_example.py --config custom_config --epochs 100 --lr 0.3
pip install -r requirements.txt