This is an implementation of DataFrames, Series and data wrangling methods for the Go programming language. The API is still in flux so use at your own risk.
The term DataFrame typically refers to a tabular dataset that can be viewed as a two dimensional table. Often the columns of this dataset refers to a list of features, while the rows represent a number of measurements. As the data on the real world is not perfect, DataFrame supports non measurements or NaN elements.
Common examples of DataFrames can be found on Excel sheets, CSV files or SQL database tables, but this data can come on a variety of other formats, like a collection of JSON objects or XML files.
The utility of DataFrames resides on the ability to subset them, merge them, summarize the data for individual features or apply functions to entire rows or columns, all while keeping column type integrity.
DataFrames can be constructed passing Series to the dataframe.New constructor function:
df := dataframe.New(
series.New([]string{"b", "a"}, series.String, "COL.1"),
series.New([]int{1, 2}, series.Int, "COL.2"),
series.New([]float64{3.0, 4.0}, series.Float, "COL.3"),
)
But as a general rule it is easier to load the data directly from
other formats. The base loading function takes some records in the
form [][]string
and returns a new DataFrame from there:
df := dataframe.LoadRecords(
[][]string{
[]string{"A", "B", "C", "D"},
[]string{"a", "4", "5.1", "true"},
[]string{"k", "5", "7.0", "true"},
[]string{"k", "4", "6.0", "true"},
[]string{"a", "2", "7.1", "false"},
},
)
By default, the column types will be auto detected but this can be
configured. For example, if we wish the default type to be Float
but
columns A
and D
are String
and Bool
respectively:
df := dataframe.LoadRecords(
[][]string{
[]string{"A", "B", "C", "D"},
[]string{"a", "4", "5.1", "true"},
[]string{"k", "5", "7.0", "true"},
[]string{"k", "4", "6.0", "true"},
[]string{"a", "2", "7.1", "false"},
},
dataframe.DetectTypes(false),
dataframe.DefaultType(series.Float),
dataframe.WithTypes(map[string]series.Type{
"A": series.String,
"D": series.Bool,
}),
)
Similarly, you can load the data stored on a []map[string]interface{}
:
df := dataframe.LoadMaps(
[]map[string]interface{}{
map[string]interface{}{
"A": "a",
"B": 1,
"C": true,
"D": 0,
},
map[string]interface{}{
"A": "b",
"B": 2,
"C": true,
"D": 0.5,
},
},
)
You can also pass an io.Reader
to the functions ReadCSV
/ReadJSON
and it will work as expected given that the data is correct:
csvStr := `
Country,Date,Age,Amount,Id
"United States",2012-02-01,50,112.1,01234
"United States",2012-02-01,32,321.31,54320
"United Kingdom",2012-02-01,17,18.2,12345
"United States",2012-02-01,32,321.31,54320
"United Kingdom",2012-02-01,NA,18.2,12345
"United States",2012-02-01,32,321.31,54320
"United States",2012-02-01,32,321.31,54320
Spain,2012-02-01,66,555.42,00241
`
df := dataframe.ReadCSV(strings.NewReader(csvStr))
jsonStr := `[{"COL.2":1,"COL.3":3},{"COL.1":5,"COL.2":2,"COL.3":2},{"COL.1":6,"COL.2":3,"COL.3":1}]`
df := dataframe.ReadJSON(strings.NewReader(jsonStr))
We can subset our DataFrames with the Subset method. For example if we want the first and third rows we can do the following:
sub := df.Subset([]int{0, 2})
If instead of subsetting the rows we want to select specific columns, by an index or column name:
sel1 := df.Select([]int{0, 2})
sel2 := df.Select([]string{"A", "C"})
In order to update the values of a DataFrame we can use the Set method:
df2 := df.Set(
[]int{0, 2},
dataframe.LoadRecords(
[][]string{
[]string{"A", "B", "C", "D"},
[]string{"b", "4", "6.0", "true"},
[]string{"c", "3", "6.0", "false"},
},
),
)
For more complex row subsetting we can use the Filter method. For example, if we want the rows where the column "A" is equal to "a" or column "B" is greater than 4:
fil := df.Filter(
dataframe.F{"A", series.Eq, "a"},
dataframe.F{"B", series.Greater, 4},
)
fil2 := fil.Filter(
dataframe.F{"D", series.Eq, true},
)
Filters inside Filter are combined as OR operations whereas if we chain Filter methods, they will behave as AND.
With Arrange a DataFrame can be sorted by the given column names:
sorted := df.Arrange(
dataframe.Sort("A"), // Sort in ascending order
dataframe.RevSort("B"), // Sort in descending order
)
If we want to modify a column or add one based on a given Series at the end we can use the Mutate method:
// Change column C with a new one
mut := df.Mutate(
series.New([]string{"a", "b", "c", "d"}, series.String, "C"),
)
// Add a new column E
mut2 := df.Mutate(
series.New([]string{"a", "b", "c", "d"}, series.String, "E"),
)
Different Join operations are supported (InnerJoin
, LeftJoin
,
RightJoin
, CrossJoin
). In order to use these methods you have to
specify which are the keys to be used for joining the DataFrames:
df := dataframe.LoadRecords(
[][]string{
[]string{"A", "B", "C", "D"},
[]string{"a", "4", "5.1", "true"},
[]string{"k", "5", "7.0", "true"},
[]string{"k", "4", "6.0", "true"},
[]string{"a", "2", "7.1", "false"},
},
)
df2 := dataframe.LoadRecords(
[][]string{
[]string{"A", "F", "D"},
[]string{"1", "1", "true"},
[]string{"4", "2", "false"},
[]string{"2", "8", "false"},
[]string{"5", "9", "false"},
},
)
join := df.InnerJoin(df2, "D")
Functions can be applied to the rows or columns of a DataFrame, casting the types as necessary:
mean := func(s series.Series) series.Series {
floats := s.Float()
sum := 0.0
for _, f := range floats {
sum += f
}
return series.Floats(sum / float64(len(floats)))
}
df.Cbind(mean)
df.Rbind(mean)
DataFrames support a number of methods for wrangling the data, filtering, subsetting, selecting columns, adding new columns or modifying existing ones. All these methods can be chained one after another and at the end of the procedure check if there has been any errors by the DataFrame Err field. If any of the methods in the chain returns an error, the remaining operations on the chain will become a no-op.
a = a.Rename("Origin", "Country").
Filter(dataframe.F{"Age", "<", 50}).
Filter(dataframe.F{"Origin", "==", "United States"}).
Select("Id", "Origin", "Date").
Subset([]int{1, 3})
if a.Err != nil {
log.Fatal("Oh noes!")
}
fmt.Println(flights)
> [336776x20] DataFrame
>
> X0 year month day dep_time sched_dep_time dep_delay arr_time ...
> 0: 1 2013 1 1 517 515 2 830 ...
> 1: 2 2013 1 1 533 529 4 850 ...
> 2: 3 2013 1 1 542 540 2 923 ...
> 3: 4 2013 1 1 544 545 -1 1004 ...
> 4: 5 2013 1 1 554 600 -6 812 ...
> 5: 6 2013 1 1 554 558 -4 740 ...
> 6: 7 2013 1 1 555 600 -5 913 ...
> 7: 8 2013 1 1 557 600 -3 709 ...
> 8: 9 2013 1 1 557 600 -3 838 ...
> 9: 10 2013 1 1 558 600 -2 753 ...
> ... ... ... ... ... ... ... ... ...
> <int> <int> <int> <int> <int> <int> <int> <int> ...
>
> Not Showing: sched_arr_time <int>, arr_delay <int>, carrier <string>, flight <int>,
> tailnum <string>, origin <string>, dest <string>, air_time <int>, distance <int>, hour <int>,
> minute <int>, time_hour <string>
A gonum/mat64.Matrix
can be loaded as a DataFrame
by using the
LoadMatrix()
function and back to mat64.Matrix
via
DataFrame.Matrix()
:
a := LoadRecords(
[][]string{
[]string{"A", "B", "C", "D"},
[]string{"1", "4", "5.1", "true"},
[]string{"1", "4", "6.0", "true"},
[]string{"2", "3", "6.0", "false"},
[]string{"2", "2", "7.1", "false"},
},
)
m := a.Matrix()
sum := mat64.Sum(m)
Series are essentially vectors of elements of the same type with support for missing values. Series are the building blocks for DataFrame columns.
Four types are currently supported:
Int
Float
String
Bool
For more information about the API, make sure to check:
Copyright 2016 Alejandro Sanchez Brotons
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.