/nfnets_pytorch

Pre-trained NFNets with 99% of the accuracy of the official paper "High-Performance Large-Scale Image Recognition Without Normalization".

Primary LanguagePythonApache License 2.0Apache-2.0

NFNet Pytorch Implementation

Open In Colab

This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale Image Recognition Without Normalization. The small models are as accurate as an EfficientNet-B7, but train 8.7 times faster. The large models set a new SOTA top-1 accuracy on ImageNet.

NFNet F0 F1 F2 F3 F4 F5 F6+SAM
Top-1 accuracy Brock et al. 83.6 84.7 85.1 85.7 85.9 86.0 86.5
Top-1 accuracy this implementation 82.82 84.63 84.90 85.46 85.66 85.62 TBD

All credits go to the authors of the original paper. This repo is heavily inspired by their nice JAX implementation in the official repository. Visit their repo for citing.

Get started

git clone https://github.com/benjs/nfnets_pytorch.git
pip3 install -r requirements.txt

or if you don't need eval and training script

pip install git+https://github.com/benjs/nfnets_pytorch

Download pretrained weights from the official repository and call

from nfnets import pretrained_nfnet
model_F0 = pretrained_nfnet('pretrained/F0_haiku.npz')
model_F1 = pretrained_nfnet('pretrained/F1_haiku.npz')
# ...

The model variant is automatically derived from the parameter count in the pretrained weights file.

Validate yourself

python3 eval.py --pretrained pretrained/F0_haiku.npz --dataset path/to/imagenet/valset/

You can download the ImageNet validation set from the ILSVRC2012 challenge site after asking for access with, for instance, your .edu mail address or from AcademicTorrents

Scaled weight standardization convolutions in your own model

Simply replace all your nn.Conv2d with WSConv2D and all your nn.ReLU with VPReLU or VPGELU (variance preserving ReLU/GELU).

import torch.nn as nn
from nfnets import WSConv2D, VPReLU, VPGELU

# Simply replace your nn.Conv2d layers
class MyNet(nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
 
        self.activation = VPReLU(inplace=True) # or VPGELU
        self.conv0 = WSConv2D(in_channels=128, out_channels=256, kernel_size=1, ...)
        # ...

    def forward(self, x):
      out = self.activation(self.conv0(x))
      # ...

SGD with adaptive gradient clipping in your own model

Simply replace your SGD optimizer with SGD_AGC.

from nfnets import SGD_AGC

optimizer = SGD_AGC(
        named_params=model.named_parameters(), # Pass named parameters
        lr=1e-3,
        momentum=0.9,
        clipping=0.1, # New clipping parameter
        weight_decay=2e-5, 
        nesterov=True)

It is important to exclude certain layers from clipping or momentum. The authors recommends to exclude the last fully convolutional from clipping and the bias/gain parameters from weight decay:

import re

for group in optimizer.param_groups:
    name = group['name'] 
    
    # Exclude from weight decay
    if len(re.findall('stem.*(bias|gain)|conv.*(bias|gain)|skip_gain', name)) > 0:
        group['weight_decay'] = 0

    # Exclude from clipping
    if name.startswith('linear'):
        group['clipping'] = None

Train your own NFNet

Adjust your desired parameters in default_config.yaml and start training.

python3 train.py --dataset /path/to/imagenet/

There is still some parts missing for complete training from scratch:

  • Multi-GPU training
  • Data augmentations
  • FP16 activations and gradients

Contribute

The implementation is still in an early stage in terms of usability / testing. If you have an idea to improve this repo open an issue, start a discussion or submit a pull request.

The current development status can be seen in this project board.