/apex-stream

An Apex framework for processing sequences of elements taking advantage of the functional programming paradigm.

Primary LanguageApexMIT LicenseMIT

Apex Stream Framework

Apex Stream is a framework for processing sequences of elements that takes advantage of the functional programming paradigm.

Inspired by Java Stream API, slightly influenced by C# Linq.Enumerable and js Array.prototype.

Table of Contents

Click to expand!

Installation

Deploy to Salesforce

or install as an Unlocked Package using the CLI:

Dependencies

Install dependencies first:

sf package install -p 04t1t000003f3UVAAY -o me@example.com -r -w 5

Install the Apex Stream. The framework consists of several Unlocked Packages:

  • Apex Functions (required):
sf package install -p 04tJ5000000D4SIIA0 -o me@example.com -r -w 10
  • Apex Enumerables (required):
sf package install -p 04tJ5000000D4SNIA0 -o me@example.com -r -w 10
  • Apex Streams (required):
sf package install -p 04tJ5000000D4SSIA0 -o me@example.com -r -w 10
  • Apex Sequences (recommended):
sf package install -p 04tJ5000000D4SXIA0 -o me@example.com -r -w 10
  • Apex Common Functions Core (recommended):
sf package install -p 04tJ5000000D4ScIAK -o me@example.com -r -w 10
  • Apex Common Functions Extension (optional):
sf package install -p 04t1t000000koWNAAY -o me@example.com -r -w 10

Modules and Key Features

  • Apex Functions:

    • Functional Interfaces
    • Functional Abstract Classes with
      • inherited abstract methods
      • default and static methods for functional composition
  • Apex Enumerables:

    • Enumerables with implementations:
      • Streams (SObjectStream, ObjectStream and number DoubleStream, IntStream, LongStream)
      • Sequences (SObjectSequence, ObjectSequence and number DoubleSequence, IntSequence, LongSequence)
    • Optionals
  • Apex Common Functions:

    • Functional Built-in Classes with common Functional Abstract Classes implementations
    • Built-in Collectors (SObjectCollectors, Collectors)

Introduction

Apex Stream Framework is built on custom Iterables (hereinafter - Enumerables) that allows processing a sequence of elements supporting sequential aggregate operations, providing a convenient declarative API.

There are 2 implementations of Enumerable - Stream and Sequence.

Stream is lazy. Computation on the source data is only performed when the terminal operation is initiated, and source elements are consumed only as needed. Also, a Stream can be operated on (invoking an intermediate or terminal stream operation) only once.

Sequence is eager. Computation on the source data is performed every time an intermediate or terminal operation is invoked. Since Sequence is stateful, it can be reused multiple times.

There are a reference and primitive specializations of Streams and Sequences

  • Reference: ObjectStream, SObjectStream, ObjectSequence, SObjectSequence
  • Primitive: IntStream, LongStream, DoubleStream, IntStream, LongStream, DoubleStream

Enumerables are operated by functions.

In terms of Apex Stream Framework, function is an instance of Functional Interface or Functional Abstract Class.

A Functional Interface is an interface that contains only one single abstract method.

A Functional Abstract Class is an abstract class that contains only one single abstract method, but may or may not contain final, virtual, or static methods to make functional composition possible.

Apex Stream Framework contains most of the built-in functions, common implementations of functions so you don't have to recreate them every time you need them.

Enumerable operations are composed of a chain, which consists of:

  • A Source which might be an enumerable (such as list or set, an iterator, a generator function, etc.).
  • Zero or more intermediate operations that transform an enumerable into another enumerable.
  • A terminal operation that produces a result.

Operations on enumerables don't change the source (but can mutate its elements).

Get Started

Note

All examples will be shown based on Streams, but all of them are also valid for Sequences, except for infinite Streams.

Stream Sources

  • Stream of Iterable

Create a Stream depending on the input argument type:

SObjectEnumerable accountStream = Stream.of(new List<Account>{ acc1, acc2, acc3 });
SObjectEnumerable triggerNewStream = Stream.of(Trigger.new);
IntEnumerable intStream = Stream.of(new Set<Integer>{ 1, 2, 3, -5, 42 });

Create a Stream explicitly specifying its type:

SObjectEnumerable accountStream = SObjectStream.of(new List<Account>{ acc1, acc2, acc3 });
SObjectEnumerable triggerNewStream = SObjectStream.of(Trigger.new);
IntEnumerable intStream = IntStream.of(new Set<Integer>{ 1, 2, 3, -5, 42 });
  • Empty Stream

Create a Stream with no elements:

SObjectEnumerable emptySObjectStream = SObjectStream.empty();
  • Infinite Stream*

Create an infinite Stream by passing Supplier to a generate method:

DoubleEnumerable infiniteRandomStream = Stream.generate(DoubleSuppliers.random());

Iterator<Double> streamIterator = infiniteRandomStream.iterator();

streamIterator.next(); // 0.1662399481554503
streamIterator.next(); // 0.2853449086423472
streamIterator.next(); // 0.5196704529392165
// so on...

To prevent hitting the CPU time limit, an infinite stream can be limited:

DoubleEnumerable firstTenRandomStream = Stream.generate(DoubleSuppliers.random()).lim(10);

Another way to create an infinite stream is passing an Operator and a seed to an iterate method. A Stream is produced by iterative application of Operator to an initial element seed, producing a Stream consisting of seed, operator(seed), operator(operator(seed)), etc.:

IntEnumerable incrementalStream = Stream.iterate(5, IntOperators.increment());

Iterator<Integer> streamIterator = incrementalStream.iterator();

streamIterator.next(); // 5
streamIterator.next(); // 6
streamIterator.next(); // 7
// so on...

Merging Streams

  • Concatenation

The simplest way to concat two streams is by using the static concat method, or instance append, prepend methods:

SObjectEnumerable accountStream1 = Stream.of(new List<Account>{ acc1, acc2, acc3 });
SObjectEnumerable accountStream2 = Stream.of(new List<Account>{ acc4, acc5, acc6 });

SObjectEnumerable mergedStream = Stream.concat(accountStream1, accountStream2); // [acc1, acc2, acc3, acc4, acc5, acc6]
SObjectEnumerable mergedStream1 = accountStream1.append(accountStream2); // [acc1, acc2, acc3, acc4, acc5, acc6]
SObjectEnumerable mergedStream2 = accountStream1.prepend(accountStream2); // [acc4, acc5, acc6, acc1, acc2, acc3]

To concat multiple streams, use the static concat method that takes a list of streams:

SObjectEnumerable mergedStream = Stream.concat(
    new List<ISObjectEnumerable>(accountStream1, accountStream2, accountStream3)
);
  • Zipping

A zip operation takes an element from each Iterable and combines them by BiOperator:

List<Integer> ints1 = new List<Integer>{ 5, 3, 9, 7, 5, 9, 3, 7 };
List<Integer> ints2 = new List<Integer>{ 8, 3, 6, 4, 4, 9, 1, 0 };

IntEnumerable zippedStream = Stream.zip(ints1, ints2, IntBiOperators.sum());
zippedStream.toList(); // [13, 6, 15, 11, 9, 18, 4, 7]

For reference streams, zip operation has a variation that additionally takes a BiPredicate argument to filter elements before zipping.

Get all Account records from Trigger.new list on update if Rating field has changed:

SObjectEnumerable newAccountStreamWithChangedRating = Stream.zip(
    Trigger.old, // The first argument is considered as left
    Trigger.new,  // The second argument is considered as right
    // Checks if oldAccount[i].Rating != newAccount[i].Rating
    SObjectBiPredicates.areEqual(Account.Rating).negate(),
    // Always return the right argument i.e elements from Trigger.new in this case
    BiOperator.right()
);

Intermediate Operations

Intermediate Operation transforms a stream into another stream.

Please note that, unlike for Sequence, for Stream an intermediate operation is not invoked until a terminal operation is invoked.

  • Set Operations

Set operations produce a result iterable that is based on the presence or absence of equivalent elements within the same or separate iterables.

A union operation returns the set union, which means unique elements that appear in either of two iterables.

An intersect operation returns the set intersection, which means unique elements that appear in each of two iterables.

An except operation returns the set difference, which means the elements of one iterable that does not appear in the second iterable.

A distinct operation returns an iterable without duplicates.

For example:

List<Integer> ints1 = new List<Integer>{ 5, 3, 9, 7, 5, 9, 3, 7 };
List<Integer> ints2 = new List<Integer>{ 8, 3, 6, 4, 4, 9, 1, 0 };

Stream.of(ints1).union(ints2).toList(); // [5, 3, 9, 7, 8, 6, 4, 1, 0]
Stream.of(ints1).intersect(ints2).toList(); // [3, 9]
Stream.of(ints1).except(ints2).toList(); // [5, 7]
Stream.of(ints1).distinct().toList(); // [5, 3, 9, 7]

Get Share records to delete and to insert on Account update, based on Share records' composite keys:

// Implement function that returns a UserOrGroupId-AccountId composite key
class CompositeKeyFunction implements IFunction {
    public Object apply(Object o) {
        SObject sObj = (SObject) o;
        return sObj.get(AccountShare.UserOrGroupId) + sObj.get(AccountShare.AccountId);
    }
}

List<AccountShare> sharesToInsert = new List<AccountShare>{ sh1, sh2, sh3, sh4, sh5 };
List<AccountShare> sharesToDelete = new List<AccountShare>{ sh3, sh4, sh6 };

// Get shares based on set differences according to a composite key classifying function:
Stream.of(sharesToInsert).except(sharesToDelete, new CompositeKeyFunction()).toList();
Stream.of(sharesToDelete).except(sharesToInsert, new CompositeKeyFunction()).toList();
  • Filtering

A filter operation picks only elements that satisfy a predicate.

Get accounts with AnnualRevenue greater than 10000:

SObjectEnumerable accountStreamWithAnnualRevenueGreaterThan10k = Stream.of(accounts)
    .filter(SObjectPredicates.isGreater(Account.AnnualRevenue, 10000));

Get accounts with AnnualRevenue greater than 1000000 and with Rating == Hot using function composition:

SObjectEnumerable filteredAccountStream = Stream.of(accounts)
    .filter(
        SObjectPredicates.isGreater(Account.AnnualRevenue, 10000)
            .andAlso(SObjectPredicates.isEqual(Account.Rating, 'Hot'))
    );
  • Iterating

A forEach operation iterates over the stream of elements, instead of using for, for-each, and while loops. A forEach is expected to mutate elements.

Set Rating to Hot for each account:

SObjectEnumerable mutatedAccountStream = Stream.of(accounts)
    .forEach(SObjectConsumers.set(Account.Rating, 'Hot'));

Set Rating to Hot and set AnnualRevenue to 0 for each account using function composition:

SObjectEnumerable mutatedAccountStream = Stream.of(accounts)
    .forEach(
        SObjectConsumers.set(Account.Rating, 'Hot')
            .andThen(SObjectConsumers.set(Account.AnnualRevenue, 0))
    );
  • Mapping

A mapTo operation converts elements by applying a function to them and collects these new elements into a new stream.

Create a stream of parent Accounts from the contact stream:

SObjectEnumerable accountStream = Stream.of(contacts)
    .mapTo(SObjectOperators.getSObject('Account'));

Create a DoubleStream from Account.AnnualRevenue values:

DoubleEnumerable revenueStream = Stream.of(accounts)
    .mapToDouble(SObjectToDoubleFunctions.get(Account.AnnualRevenue));

A flatMapTo operation converts elements by applying a function that returns an Iterable to them and collects these new inner elements into a new stream.

Create a stream of related child contacts from the account stream:

SObjectEnumerable contactStream = Stream.of(accounts)
    .flatMapTo(SObjectFunctions.getSObjects('Contacts'));

Create a stream of flattened ints from a nested List<List<Integer>> list:

List<List<Integer>> containedInts = new List<List<Integer>>{
    new List<Integer>{ 1 },
    null,
    new List<Integer>(),
    new List<Integer>{ 0, 10 },
    new List<Integer>{ null }
}; // [ [1], null, [], [0, 10], [null] ]

List<Integer> flattenedInts = Stream.of(containedInts)
    .flatMapToInt(Function.identity())
    .toList(); // [1, 0, 10, null]
  • Limit and Skip

A limit operation returns a stream not longer than the requested size.

A skip operation discards the first n elements of a stream.

Get the second page of accounts with 10 elements size:

Integer page = 2;
Integer pageSize = 10;

List<Account> accountsForTheSecondPage = Stream.of(accounts)
    .skip(pageSize * (page - 1))
    .lim(pageSize)
    .toList();
  • Sorting

A sort operation returns a sorted stream considering the sort order and Comparer function.

Sort accounts according to default order:

SObjectEnumerable sortedAccountStream = Stream.of(accounts)
    .sort();

Sort accounts according to order:

SObjectEnumerable sortedDescAccountStream = Stream.of(accounts)
    .sort(SortOrder.DESCENDING);

Sort accounts by Name:

SObjectEnumerable sortedAccountStream = Stream.of(accounts)
    .sort(Account.Name);

Sort accounts by Rating and then, if ratings are equal, sort by NumberOfEmployees considering nulls greater than any value and then sort by AnnualRevenue in descending order:

SObjectEnumerable sortedAccountStream = Stream.of(accounts)
    .sort(
        Comparer.comparing(SObjectFunctions.get(Account.Rating))
            .thenComparing(SObjectFunctions.get(Account.NumberOfEmployees).nullsLast())
            .thenComparing(SObjectFunctions.get(Account.AnnualRevenue).reversed())
    );

Terminal Operations

Terminal Operations produces a stream result and can be invoked only once.

  • Matching

find, every, some, and none operations validate elements according to a predicate.

A find operation returns the first element that matches a predicate as Optional.

An every operation checks if all elements match a predicate.

An some operation checks if some element matches a predicate.

A none operation checks if no elements match a predicate.

Check if all accounts have Hot Rating:

Boolean isEveryAccountHot = Stream.of(accounts)
    .every(Account.Rating, 'Hot');

Find a first Warm account:

Optional optionalWarmAccount = Stream.of(accounts)
    .find(Account.Rating, 'Warm');
  • Reduction

A reduce operation performs a stream reduction, using the provided identity value and an associative accumulation function, and returns the reduced value.

reduce is equivalent to:

T result = identity;
for (T element : thisStream) {
    result = accumulator.apply(result, element);
}
return result;

Calculate a factorial of n (up to 20):

Long factorial(Long n) {
    return LongStream.range(1, n).reduce(1, LongBiOperators.product());
}

factorial(20L); // 2432902008176640000

min, max operations on a primitive stream find a minimal or maximal element according to the default order as Optional:

Integer maxInt = (Integer) Stream.of(integers)
    .max()  // returns an Optional
    .get(); // returns a value if present or throws NoSuchElementException otherwise

On a reference stream, search reduction is operated according to a comparer and returns a result as Optional.

Find an optional account with a max AnnualRevenue:

Optional optionalAccountWithMaxAnnualRevenue = Stream.of(accounts)
    .max(Account.AnnualRevenue);

sum, avg operations on a primitive stream calculate an arithmetic sum and mean.

Calculate the sum of elements of the stream:

Double sum = Stream.of(doubles).sum();

sum, avg operations on a reference stream calculate an arithmetic sum and mean of elements returned by a mapping function.

Find an optional account with a max AnnualRevenue:

Double sumOfAnnualRevenue = Stream.of(accounts).sum(Account.AnnualRevenue);
  • Collecting

A collect operation performs a mutable reduction operation on stream elements, collecting elements into a container using Collector or (Suppier and BiConsumer) functions.

collect is equivalent to:

R result = supplier.get();
for (T element : thisStream) {
    accumulator.accept(result, element);
}
if (finisher != null) {
    return finisher.apply(result);
}
return result;

Collect accounts to List:

List<Account> sumOfAnnualRevenue = (List<Account>) Stream.of(accounts)
    .collect(Collectors.toList(Account.class));
// The same as
List<Account> sumOfAnnualRevenue = Stream.of(accounts).toList();

Group accounts by Rating:

Map<Object, List<Account>> accountsByRating = (Map<Object, List<Account>>) Stream.of(accounts)
    .collect(SObjectCollectors.groupingByObject(Account.Rating));

Type interference is "broken" in Apex for Set and Map keys:

List<Object> o = new List<String>{ 'foo', 'bar' };
List<String> asStrings = (List<String>) o; // Valid cast

Set<Object> o = new Set<String>{ 'foo', 'bar' }; // Illegal assignment from Set<String> to Set<Object>
Map<String, Object> o = new Map<String, String>{ 'foo' => 'bar' };
Map<String, String> asStrings = (Map<String, String>) o; // Valid cast

// Illegal assignment from Map<String,String> to Map<Object,Object>
Map<Object, Object> o = new Map<String, String>{ 'foo' => 'bar' };

This is why we should explicitly set a specific collecting function according to an expected container type:

Group accounts by Rating as a string:

Map<String, List<Account>> accountsByRating = (Map<String, List<Account>>) Stream.of(accounts)
    .collect(SObjectCollectors.groupingByString(Account.Rating));

Apex Stream Framework provides built-in collectors for each primitive type:

Map<Datetime, List<Account>> accountsByRating = (Map<Datetime, List<Account>>) Stream.of(accounts)
    .collect(SObjectCollectors.groupingByDatetime(Account.CreatedDate));

Map accounts by ParentId:

Map<Id, SObject> accountByRating = (Map<Id, SObject>) Stream.of(accounts)
    .collect(SObjectCollectors.mapById(Account.ParentId));

accountByRating map cannot be cast to Map<String, Account> directly, because:

List<SObject> sObjects = new List<Account>();
List<Account> accounts = sObjects; // Cast implicitly

SObject sObj = new Account();
Account acc = (Account) sObj; // Should be cast explicitly

To make accountByRating castable to Map<String, Account> it is possible either

  • to specify the type of Supplier and BiOperator explicitly:
Map<Id, Account> accountByParentId = (Map<Id, Account>) Stream.of(accounts)
    .collect(
        Collector.of(
            Supplier.of(Map<Id, Account>.class),
            MapObjectConsumers.putToObjectByIdMap(
                SObjectFunctions.get(Account.ParentId), // key mapping function
                SObjectFunction.identity() // value mapping function
            )
        )
    );
  • or to use cast function:
Map<Id, Account> accountByParentId = (Map<Id, Account>) Stream.of(accounts)
    .collect(SObjectCollectors.mapById(Account.ParentId).cast(Map<Id, Account>.class));

Collectors also allow the reusing of complex collection strategies and composition of collect operations such as multiple-level grouping or partitioning by using downstream collectors.

Classify account names by BillingCountry and by BillingCity cascading two collectors together:

ICollector groupNamesByBillingCityDownstreamCollector
    = SObjectCollectors.groupingByString(Account.BillingCity, Account.Name);

Map<String, Map<String, List<String>>> accountNamesByCityByCountry =
    (Map<String, Map<String, List<String>>>) Stream.of(contacts)
        .collect(SObjectCollectors.groupingByString(
            SObjectFunctions.get(Account.BillingCountry),
            groupNamesByBillingCityDownstreamCollector
        ).cast(Map<String, Map<String, List<String>>>.class));

/* The result json structure: 
{
  'US' : {
    'New York' : ['Behance', 'Spotify'],
    'Los Angeles' : ['Universal Pictures', 'CBRE Group']
  },
  'UK' : {
    'London' : ['Aviva', 'Schroders'],
    'Glasgow' : ['Aggreko']
  }
}
*/

Few Collector functions such as reducing, maximizing, minimizing, summing, averaging, and counting does not support type casting.

Classify accounts with max AnnualRevenue per BillingCountry:

IBiOperator accumulator = BiOperator.maxBy(SObjectFunctions.get(Account.AnnualRevenue));
ICollector maximizeAnnualRevenueDownstreamCollector = Collectors.reducing(accumulator);
Map<String, Object> optionalAccountWithMaxRevenueByCity = (Map<String, Object>) Stream.of(accounts)
    .collect(SObjectCollectors.groupingByString(
        SObjectFunctions.get(Account.BillingCity),
        maximizeAnnualRevenueDownstreamCollector
    )); // Cannot be cast to Map<String, Optional>

Optional optionalAccount = (Optional) optionalAccountWithMaxRevenueByCity.get('London');
Account acc = (Account) optionalAccount.get();
  • Fast Collecting

SObjectIterable also supports simple fast collecting methods if you don't want to use collect operation:

  • toList
  • toSet
  • toIdSet
  • toStringSet
  • toMap
  • toByIdMap
  • toByStringMap
  • groupById
  • groupByString
  • partition

Collect all AccountId values:

Set<Object> accountIds = Stream.of(contact).toSet(Contact.AccountId);
// Or
Set<Id> accountIds = Stream.of(contact).toIdSet(Contact.AccountId);
// Or
List<Id> accountIds = (List<Id>) Stream.of(contact).toList(Contact.AccountId, Id.class);

Group accounts by Rating:

Map<String, List<Account>> accountsByRating = Stream.of(accounts).groupByString(Account.Rating);
  • Run

Streams implement IRunnable to apply a terminal operation to the Stream.

// The accounts are not mutated until a terminal operation is invoked
SObjectStream accountStream = (SObjectStream) Stream.of(accounts)
    .forEach(SObjectConsumers.set(Account.Rating, 'Hot'));

// Applies the terminal operation to mutate accounts
accountStream.run();

Optional

An Optional is a container that may or may not contain a non-null value.

To create an empty Optional:

Optional emptyOptional = Optional.empty();

To create an Optional from account:

// Throws NPE if account is null
Optional optionalAccount = Optional.of(account);
// Does not throw NPE if account is null
Optional optionalAccount = Optional.ofNullable(account);

To check if Optional contains a value, use isPresent or isEmpty methods:

Boolean isNonNullAccount = optionalAccount.isPresent();
Boolean isNullAccount = optionalAccount.isEmpty();

To act with value if the value is present, use ifPresent method:

optionalAccount.ifPresent(SObjectConsumers.addError('Error Message'));

get method returns a value if present, otherwise throws NoSuchElementException:

Account acc = (Account) optionalAccount.get(); 

To return a default value if Optional is empty, otherwise, return value, use orElse method:

Account acc = (Account) optionalAccount.orElse(new Account()); 

orElseGet is similar to orElse but returns a value from a provided Supplier:

Account acc = (Account) optionalAccount.orElseGet(SObjectSuppliers.of(Account.SObjectType)); 

Examples

Calculate the sum of AnnualRevenue of distinct by Name field accounts with hot rating:

Double annualRevenueSum = Stream.of(accounts)
    .filter(Account.Rating, 'Hot')
    .distinct(Account.Name)
    .sum(Account.AnnualRevenue);

Set NumberOfEmployees to 0 for each parent Account taken from contacts:

List<Account> accounts = Stream.of(contacts)
    .mapTo('Account')
    .forEach('NumberOfEmployees', 0)
    .toList();

Create and relate contacts to parent accounts and set the Descripton field:

List<Contact> contacts = Stream.of(accounts)
    .mapTo(
        SObjectOperators.newSObject(
            Contact.SObjectType,
            Contact.AccountId,
            SObjectFunction.get(Account.Id)
        ).andThen(SObjectOperators.set(Contact.Description, 'Some Description'))
    )
    .toList();

Filter accounts having AnnualRevenue > 10000 sort by AnnualRevenue in descending order and group by Rating:

Map<String, List<Account>> accountsByRating = Stream.of(accounts)
    .filter(SObjectPredicates.isGreater('AnnualRevenue', 10000))
    .sort('AnnualRevenue', SortOrder.DESCENDING)
    .groupByString('Rating');

Group LastName field values by OtherCountry:

Map<String, List<String>> lastNamesByOtherCountry = (Map<String, List<String>>) Stream.of(contacts)
    .collect(
        SObjectCollectors.groupingByString(
            Contact.OtherCountry,
            Contact.LastName
        ).cast(Map<String, List<String>>.class)
    );

Filter input allowing not blank strings, convert all the characters to uppercase, sort, skip the first element and return a list containing the first 2 elements:

List<Object> input = new List<Object>{
    new Account(), 1, 1L, null, '  ', '', 'hello',
    'world', 'Amen', 'Doo', 'baz', 'Bar', 'World', 1.5
};

List<String> result = (List<String>) Stream.of(input)
    .filter(TypePredicates.isInstanceOfString().andAlso(StringPredicates.isNotBlank()))
    .mapTo(StringFunctions.toUpperCase())
    .sort()
    .skip(1)
    .lim(2)
    .toList(String.class); // ['BAR', 'BAZ']

And more!

Find more examples here.

Documentation

Full Apex Stream Framework Documentation.

User Guide (in development)

If you want to know more, take a look at the User Guide for a brief introduction to the Apex Stream Framework.