/text-preprocessing

A python package for text preprocessing task in natural language processing.

Primary LanguagePythonBSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

Text preprocessing for Natural Language Processing

Build Release PyPi

A python package for text preprocessing task in natural language processing.

Usage

To use this text preprocessing package, first install it using pip:

pip install text-preprocessing

Then, import the package in your python script and call appropriate functions:

from text_preprocessing import preprocess_text
from text_preprocessing import to_lower, remove_email, remove_url, remove_punctuation, lemmatize_word

# Preprocess text using default preprocess functions in the pipeline 
text_to_process = 'Helllo, I am John Doe!!! My email is john.doe@email.com. Visit our website www.johndoe.com'
preprocessed_text = preprocess_text(text_to_process)
print(preprocessed_text)
# output: hello email visit website

# Preprocess text using custom preprocess functions in the pipeline 
preprocess_functions = [to_lower, remove_email, remove_url, remove_punctuation, lemmatize_word]
preprocessed_text = preprocess_text(text_to_process, preprocess_functions)
print(preprocessed_text)
# output: helllo i am john doe my email is visit our website

If you have a lot of data to preprocess, and would like to run text preprocessig in a parallel manner in PySpark on Databricks, please use the following udf function:

from text_preprocessing import preprocess_text
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
from pyspark.sql import DataFrame as SparkDataFrame


def preprocess_text_spark(df: SparkDataFrame, 
                          target_column: str, 
                          preprocessed_column_name: str = 'preprocessed_text'
                         ) -> SparkDataFrame:
    """ Preprocess text in a column of a PySpark DataFrame by leveraging PySpark UDF to preprocess text in parallel """
    _preprocess_text = udf(preprocess_text, StringType())
    new_df = df.withColumn(preprocessed_column_name, _preprocess_text(df[target_column]))
    return new_df

Features

Feature Function
convert to lower case to_lower
convert to upper case to_upper
keep only alphabetic and numerical characters keep_alpha_numeric
check and correct spellings check_spelling
expand contractions expand_contraction
remove URLs remove_url
remove names remove_name
remove emails remove_email
remove phone numbers remove_phone_number
remove SSNs remove_ssn
remove credit card numbers remove_credit_card_number
remove numbers remove_number
remove bullets and numbering remove_itemized_bullet_and_numbering
remove special characters remove_special_character
remove punctuations remove_punctuation
remove extra whitespace remove_whitespace
normalize unicode (e.g., café -> cafe) normalize_unicode
remove stop words remove_stopword
tokenize words tokenize_word
tokenize sentences tokenize_sentence
substitute custom words (e.g., vs -> versus) substitute_token
stem words stem_word
lemmatize words lemmatize_word
preprocess text through a sequence of preprocessing functions preprocess_text