/ndtguide

MeasurementLab NDT data query guide

Primary LanguagePythonMIT LicenseMIT

NDTGuide

NDTGuide is a Python package that aims to provide easy to use quick access to MeasurementLab's (MLab) NDT measurement data on Google BigQuery. NDTGuide provides an abstract layer around the Google BigQuery interface and MLab's data schema. At its core, it provides a growing number of functions that translate user intentions into BigQuery SQL statements.

This library is intended to work only on Google Colab platform.

Usage

The full example code of this usage guide is available here.

Install the ndtguide Package on Google Colab

Execute the following code block at the very beginning of your Google Colab script to install and import the package.

!pip install ndtguide==0.1.1
from ndtguide import NDTGuide

Login with Google Account (Required Step)

Since the MLab's data access is tied to individual Google accounts, it is required to first login to Google first when first running the script. NDTGuide provided a wrapper .login() function that interactively prompt user to login.

guide = NDTGuide()
guide.login()

Gather Daily NDT Stats

One of the most used queries is to pull out daily aggregated statistics of the measurement data to gather some overview of certain clients/servers/regions. NDTGuide provides the .sql_daily_aggregate(...) function to generate sql statements for this task.

It accepts the following required parameters:

  • table_name: currently supports ndt7 or ndt5
  • date_start and date_end: start and end date, in the format of YYYY-mm-dd
  • aggr_func: aggregation function, currently supports avg, max, min

Additional filters for NDT clients and servers include:

  • client_asn and server_asn: autonomous number of the client/server
  • client_cidr and server_cidr: IP block (CIDR) of the client/server
  • client_country and server_country: two-letter country code of the client/server

The query should return results of the following data:

  • mean throughput
  • minimum RTT
  • packet loss rate

The following example queries the average measurements from ndt7 table between 2022-02-01 to 2022-02-10 for clients located in Ukraine.

sql = guide.sql_daily_aggregate("ndt7", "2022-02-01", "2022-02-10", "avg", client_country="ua")
guide.exec_sql(sql)
|   | avg_throughput |   avg_rtt | avg_lossrate |       date |
| 0 |      49.453097 | 52.033121 |     0.042338 | 2022-02-01 |
| 1 |      50.410214 | 53.451678 |     0.051775 | 2022-02-02 |
| 2 |      52.047963 | 52.372124 |     0.043772 | 2022-02-03 |
| 3 |      54.767157 | 55.180171 |     0.041808 | 2022-02-04 |
| 4 |      47.897135 | 58.383362 |     0.029880 | 2022-02-05 |
| 5 |      75.044735 | 59.411379 |     0.041825 | 2022-02-06 |
| 6 |      91.473595 | 49.754529 |     0.048684 | 2022-02-07 |
| 7 |      58.433473 | 48.761221 |     0.041670 | 2022-02-08 |
| 8 |     105.985296 | 56.598006 |     0.034676 | 2022-02-09 |
| 9 |      64.017782 | 57.256041 |     0.045156 | 2022-02-10 |

Gather Clients and Servers

NDTGuide provides function to generate queries look for

  • clients that users servers in certain network
  • servers that the clients in certain network uses

These functions allow users to quickly locate relevant clients/servers for any interested networks.

For example, the following query gathers all the NDT servers any clients from AS3216 used during a one week period:

sql = guide.sql_get_servers("ndt7", "2022-01-01", "2022-01-07", "3216")
print(sql)
df = guide.exec_sql(sql)
df
      SELECT distinct server.Site, server.Machine, server.Network.ASNumber, server.Network.ASName, server.Network.CIDR, server.Geo.CountryCode, server.Geo.City
      FROM `measurement-lab.ndt.ndt7` 
      WHERE date>='2022-01-01' and date<='2022-01-07'  and client.Network.ASNumber=3216
      
|    | Site  | Machine | ASNumber | ASName                            | CIDR               | CountryCode | City      |
|----+-------+---------+----------+-----------------------------------+--------------------+-------------+-----------|
|  0 | beg01 | mlab1   |    13004 | Serbian Open Exchange DOO         | 188.120.127.0/26   | RS          | Belgrade  |
|  1 | arn03 | mlab1   |     3356 | Level 3 Parent, LLC               | 213.242.86.64/26   | SE          | Stockholm |
|  2 | beg01 | mlab2   |    13004 | Serbian Open Exchange DOO         | 188.120.127.0/26   | RS          | Belgrade  |
|  3 | arn04 | mlab2   |     1299 | Telia Company AB                  | 62.115.225.128/26  | SE          | Stockholm |
|  4 | arn05 | mlab3   |     3257 | GTT Communications Inc.           | 77.67.119.64/26    | SE          | Stockholm |
|  5 | arn03 | mlab2   |     3356 | Level 3 Parent, LLC               | 213.242.86.64/26   | SE          | Stockholm |
|  6 | beg01 | mlab3   |    13004 | Serbian Open Exchange DOO         | 188.120.127.0/26   | RS          | Belgrade  |
|  7 | arn02 | mlab3   |     1273 | Vodafone Group PLC                | 195.89.146.192/26  | SE          | Stockholm |
|  8 | hnd02 | mlab1   |     2518 | BIGLOBE Inc.                      | 210.151.179.128/26 | JP          | Tokyo     |
|  9 | arn06 | mlab3   |     6453 | TATA COMMUNICATIONS (AMERICA) INC | 193.142.125.64/26  | SE          | Stockholm |
| 10 | arn04 | mlab1   |     1299 | Telia Company AB                  | 62.115.225.128/26  | SE          | Stockholm |
| 11 | arn06 | mlab2   |     6453 | TATA COMMUNICATIONS (AMERICA) INC | 193.142.125.64/26  | SE          | Stockholm |
| 12 | arn04 | mlab3   |     1299 | Telia Company AB                  | 62.115.225.128/26  | SE          | Stockholm |
| 13 | hnd04 | mlab1   |     5580 | GTT Netherlands B.V.              | 64.235.255.128/26  | JP          | Tokyo     |
| 14 | arn05 | mlab1   |     3257 | GTT Communications Inc.           | 77.67.119.64/26    | SE          | Stockholm |
| 15 | arn02 | mlab1   |     1273 | Vodafone Group PLC                | 195.89.146.192/26  | SE          | Stockholm |
| 16 | arn02 | mlab2   |     1273 | Vodafone Group PLC                | 195.89.146.192/26  | SE          | Stockholm |
| 17 | hnd03 | mlab1   |     2516 | KDDI Corporation                  | 111.109.1.64/26    | JP          | Tokyo     |
| 18 | hnd04 | mlab3   |     5580 | GTT Netherlands B.V.              | 64.235.255.128/26  | JP          | Tokyo     |
| 19 | arn05 | mlab2   |     3257 | GTT Communications Inc.           | 77.67.119.64/26    | SE          | Stockholm |
| 20 | hnd03 | mlab3   |     2516 | KDDI Corporation                  | 111.109.1.64/26    | JP          | Tokyo     |
| 21 | arn06 | mlab1   |     6453 | TATA COMMUNICATIONS (AMERICA) INC | 193.142.125.64/26  | SE          | Stockholm |
| 22 | arn03 | mlab3   |     3356 | Level 3 Parent, LLC               | 213.242.86.64/26   | SE          | Stockholm |

Customizable Queries

NDTGuide provide a .get_schema() function to provide a selected useful schema to help with manually constructing BigQuery queries.

guide.get_schema()
{'a': {'CongestionControl': 'string',
  'LossRate': 'float',
  'MeanThroughputMbps': 'float',
  'MinRTT': 'float',
  'TestTime': 'TimeStamp',
  'UUID': 'string'},
 'client': {'Geo': {'City': 'string',
   'ContinentCode': 'string',
   'CountryCode': 'string',
   'CountryName': 'string'},
  'Network': {'ASName': 'string', 'ASNumber': 'integer', 'CIDR': 'string'}},
 'date': 'date',
 'id': 'string',
 'server': {'Geo': {'City': 'string',
   'ContinentCode': 'string',
   'CountryCode': 'string',
   'CountryName': 'string'},
  'Machine': 'string',
  'Network': {'ASName': 'string', 'ASNumber': 'integer', 'CIDR': 'string'},
  'Site': 'string'}}

The customized queries can be passed into the same .exec_sql(sql) function similar to other provided built-in functions.

Credits

This work is generously sponsored by MeasurementLab as part of the M-Lab Research Fellowship for Spring 2022.