This repository contains Label-Noise Representation Learning (LNRL) papers mentioned in our survey "A Survey of Label-noise Representation Learning: Past, Present, and Future".
We will update this paper list to include new LNRL papers periodically.
Please cite our paper if you find it helpful.
@article{han2020survey,
title={A survey of label-noise representation learning: Past, present and future},
author={Han, Bo and Yao, Quanming and Liu, Tongliang and Niu, Gang and Tsang, Ivor W and Kwok, James T and Sugiyama, Masashi},
year={2021}
}
-
B. Frénay and M. Verleysen, Classification in the presence of label noise: a survey, IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 5, pp. 845–869, 2013. paper
-
G. Algan and I. Ulusoy, Image classification with deep learning in the presence of noisy labels: A survey, arXiv preprint arXiv:1912.05170, 2019. paper
-
D. Karimi, H. Dou, S. K. Warfield, and A. Gholipour, Deep learning with noisy labels: exploring techniques and remedies in medical image analysis, Medical Image Analysis, 2020. paper
-
H. Song, M. Kim, D. Park, and J.-G. Lee, Learning from noisy labels with deep neural networks: A survey, arXiv preprint arXiv:2007.08199, 2020. paper
-
B. van Rooyen and R. C. Williamson, A theory of learning with corrupted labels, Journal of Machine Learning Research, vol. 18, no. 1, pp. 8501–8550, 2017. paper
-
G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu, Making deep neural networks robust to label noise: A loss correction approach, in CVPR, 2017. paper
-
S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, and R. Fergus, Training convolutional networks with noisy labels, in ICLR Workshop, 2015. paper
-
J. Goldberger and E. Ben-Reuven, Training deep neural-networks using a noise adaptation layer, in ICLR, 2017. paper
-
I. Misra, C. Lawrence Zitnick, M. Mitchell, and R. Girshick, Seeing through the human reporting bias: Visual classifiers from noisy human-centric labels, in CVPR, 2016. paper
-
G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu, Making deep neural networks robust to label noise: A loss correction approach, in CVPR, 2017. paper
-
D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel, Using trusted data to train deep networks on labels corrupted by severe noise, in NeurIPS, 2018. paper
-
M. Lukasik, S. Bhojanapalli, A. K. Menon, and S. Kumar, Does label smoothing mitigate label noise? in ICML, 2020. paper
-
B. Han, J. Yao, G. Niu, M. Zhou, I. Tsang, Y. Zhang, and M. Sugiyama, Masking: A new perspective of noisy supervision, in NeurIPS, 2018. paper
-
X. Xia, T. Liu, N.Wang, B. Han, C. Gong, G. Niu, and M. Sugiyama, Are anchor points really indispensable in label-noise learning? in NeurIPS, 2019. paper
-
Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L.-J. Li, Learning from noisy labels with distillation, in ICCV, 2017. paper
-
J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig, J. Philbin, and L. Fei-Fei, The unreasonable effectiveness of noisy data for fine-grained recognition, in ECCV, 2016. paper
-
C. G. Northcutt, T.Wu, and I. L. Chuang, Learning with confident examples: Rank pruning for robust classification with noisy labels, in UAI, 2017. paper
-
Y. Kim, J. Yim, J. Yun, and J. Kim, Nlnl: Negative learning for noisy labels, in ICCV, 2019. paper
-
P. H. Seo, G. Kim, and B. Han, Combinatorial inference against label noise, in NeurIPS, 2019. paper
-
T. Kaneko, Y. Ushiku, and T. Harada, Label-noise robust generative adversarial networks, in CVPR, 2019. paper
-
A. Lamy, Z. Zhong, A. K. Menon, and N. Verma, Noise-tolerant fair classification, in NeurIPS, 2019. paper
-
J. Yao, H. Wu, Y. Zhang, I. W. Tsang, and J. Sun, Safeguarded dynamic label regression for noisy supervision, in AAAI, 2019. paper
-
S. Azadi, J. Feng, S. Jegelka, and T. Darrell, Auxiliary image regularization for deep cnns with noisy labels, in ICLR, 2016. paper
-
D.-H. Lee, Pseudo-label: The simple and efficient semisupervised learning method for deep neural networks, in ICML Workshop, 2013.
-
S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich, Training deep neural networks on noisy labels with bootstrapping, in ICLR Workshop, 2015. paper
-
H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, mixup: Beyond empirical risk minimization, in ICLR, 2018. paper
-
T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, Virtual adversarial training: a regularization method for supervised and semi-supervised learning, IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 8, pp. 1979–1993, 2018. paper
-
B. Han, G. Niu, X. Yu, Q. Yao, M. Xu, I. Tsang, and M. Sugiyama, Sigua: Forgetting may make learning with noisy labels more robust, in ICML, 2020. paper
-
T. Liu and D. Tao, Classification with noisy labels by importance reweighting, IEEE Transactions on pattern analysis and machine intelligence, vol. 38, no. 3, pp. 447–461, 2015. paper
-
Y. Wang, A. Kucukelbir, and D. M. Blei, Robust probabilistic modeling with bayesian data reweighting, in ICML, 2017. paper
-
E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuinness, Unsupervised label noise modeling and loss correction, in ICML, 2019. paper
-
J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, Meta-weight-net: Learning an explicit mapping for sample weighting, in NeurIPS, 2019. paper
-
A. K. Menon, A. S. Rawat, S. J. Reddi, and S. Kumar, Can gradient clipping mitigate label noise? in ICLR, 2020. paper
-
Z. Zhang and M. Sabuncu, Generalized cross entropy loss for training deep neural networks with noisy labels, in NeurIPS, 2018. paper
-
N. Charoenphakdee, J. Lee, and M. Sugiyama, On symmetric losses for learning from corrupted labels, in ICML, 2019. paper
-
S. Thulasidasan, T. Bhattacharya, J. Bilmes, G. Chennupati, and J. Mohd-Yusof, Combating label noise in deep learning using abstention, in ICML, 2019. paper
-
Y. Lyu and I. W. Tsang, Curriculum loss: Robust learning and generalization against label corruption, in ICLR, 2020. paper
-
S. Laine and T. Aila, Temporal ensembling for semi-supervised learning, in ICLR, 2017. paper
-
D. T. Nguyen, C. K. Mummadi, T. P. N. Ngo, T. H. P. Nguyen, L. Beggel, and T. Brox, Self: Learning to filter noisy labels with self-ensembling, in ICLR, 2020. paper
-
X. Ma, Y. Wang, M. E. Houle, S. Zhou, S. M. Erfani, S.-T. Xia, S. Wijewickrema, and J. Bailey, Dimensionality-driven learning with noisy labels, in ICML, 2018. paper
-
S. Branson, G. Van Horn, and P. Perona, Lean crowdsourcing: Combining humans and machines in an online system, in CVPR, 2017. paper
-
A. Vahdat, Toward robustness against label noise in training deep discriminative neural networks, in NeurIPS, 2017. paper
-
H.-S. Chang, E. Learned-Miller, and A. McCallum, Active bias: Training more accurate neural networks by emphasizing high variance samples, in NeurIPS, 2017. paper
-
A. Khetan, Z. C. Lipton, and A. Anandkumar, Learning from noisy singly-labeled data, ICLR, 2018. paper
-
D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa, Joint optimization framework for learning with noisy labels, in CVPR, 2018. paper
-
Y. Wang, W. Liu, X. Ma, J. Bailey, H. Zha, L. Song, and S.-T. Xia, Iterative learning with open-set noisy labels, in CVPR, 2018. paper
-
S. Jenni and P. Favaro, Deep bilevel learning, in ECCV, 2018. paper
-
Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, and J. Bailey, Symmetric cross entropy for robust learning with noisy labels, in ICCV, 2019. paper
-
J. Li, Y. Song, J. Zhu, L. Cheng, Y. Su, L. Ye, P. Yuan, and S. Han, Learning from large-scale noisy web data with ubiquitous reweighting for image classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019. paper
-
Y. Xu, P. Cao, Y. Kong, and Y. Wang, L_dmi: A novel informationtheoretic loss function for training deep nets robust to label noise, in NeurIPS, 2019. paper
-
Y. Liu and H. Guo, Peer loss functions: Learning from noisy labels without knowing noise rates, in ICML, 2020. paper
-
X. Ma, H. Huang, Y. Wang, S. Romano, S. Erfani, and J. Bailey, Normalized loss functions for deep learning with noisy labels, in ICML, 2020. paper
-
C. Zhang, S. Bengio, M. Hardt, . BRecht, and O. Vinyals. Understanding deep learning requires rethinking generalization, in ICML, 2016. paper
-
D. Arpit, S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, and S. Lacoste-Julien. A closer look at memorization in deep networks, In ICML, 2017. paper
-
L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels, in ICML, 2018. paper
-
M. Ren, W. Zeng, B. Yang, and R. Urtasun, Learning to reweight examples for robust deep learning, in ICML, 2018. paper
-
L. Jiang, D. Huang, M. Liu, W. Yang. Beyond synthetic noise: Deep learning on controlled noisy labels, in ICML 2020. paper
-
B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama, Co-teaching: Robust training of deep neural networks with extremely noisy labels, in NeurIPS, 2018. paper
-
X. Yu, B. Han, J. Yao, G. Niu, I. W. Tsang, and M. Sugiyama, How does disagreement help generalization against label corruption? in ICML, 2019. paper
-
Q. Yao, H. Yang, B. Han, G. Niu, and J. T. Kwok, Searching to exploit memorization effect in learning with noisy labels, in ICML, 2020. paper
-
J. Li, R. Socher, and S. C. Hoi, Dividemix: Learning with noisy labels as semi-supervised learning, in ICLR, 2020. paper
-
D. Hendrycks, K. Lee, and M. Mazeika, Using pre-training can improve model robustness and uncertainty, in ICML, 2019. paper
-
D. Bahri, H. Jiang, and M. Gupta, Deep k-nn for noisy labels, in ICML, 2020. paper
-
P. Chen, B. Liao, G. Chen, and S. Zhang, Understanding and utilizing deep neural networks trained with noisy labels, in ICML, 2019. paper
-
A. Veit, N. Alldrin, G. Chechik, I. Krasin, A. Gupta, and S. Belongie, Learning from noisy large-scale datasets with minimal supervision, in CVPR, 2017. paper
-
B. Zhuang, L. Liu, Y. Li, C. Shen, and I. Reid, Attend in groups: a weakly-supervised deep learning framework for learning from web data, in CVPR, 2017. paper
-
K.-H. Lee, X. He, L. Zhang, and L. Yang, Cleannet: Transfer learning for scalable image classifier training with label noise, in CVPR, 2018. paper
-
S. Guo, W. Huang, H. Zhang, C. Zhuang, D. Dong, M. R. Scott,and D. Huang, Curriculumnet: Weakly supervised learning from large-scale web images, in ECCV, 2018. paper
-
J. Deng, J. Guo, N. Xue, and S. Zafeiriou, Arcface: Additive angular margin loss for deep face recognition, in CVPR, 2019. paper
-
X. Wang, S. Wang, J. Wang, H. Shi, and T. Mei, Co-mining: Deep face recognition with noisy labels, in ICCV, 2019. paper
-
J. Huang, L. Qu, R. Jia, and B. Zhao, O2u-net: A simple noisylabel detection approach for deep neural networks, in ICCV, 2019. paper
-
J. Han, P. Luo, and X. Wang, Deep self-learning from noisy labels, in ICCV, 2019. paper
-
H. Harutyunyan, K. Reing, G. V. Steeg, and A. Galstyan, Improving generalization by controlling label-noise information in neural network weights, in ICML, 2020. paper
-
H. Wei, L. Feng, X. Chen, and B. An, Combating noisy labels by agreement: A joint training method with co-regularization, in CVPR, 2020. paper
-
Z. Zhang, H. Zhang, S. O. Arik, H. Lee, and T. Pfister, Distilling effective supervision from severe label noise, in CVPR, 2020. paper
-
T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang, Learning from massive noisy labeled data for image classification, in CVPR, 2015. paper
-
L. Jiang, D. Huang, M. Liu, and W. Yang, Beyond synthetic noise: Deep learning on controlled noisy labels, in ICML, 2020. paper
-
W. Li, L. Wang, W. Li, E. Agustsson, and L. Van Gool. Webvision database: Visual learning and understanding from web data. arXiv preprint arXiv:1708.02862, 2017. paper
-
A. Menon, B. Van Rooyen, and N. Natarajan, Learning from binary labels with instance-dependent corruption, Machine Learning, vol. 107, p. 1561–1595, 2018. paper
-
J. Cheng, T. Liu, K. Ramamohanarao, and D. Tao, Learning with bounded instance-and label-dependent label noise, in ICML, 2020. paper
-
A. Berthon, B. Han, G. Niu, T. Liu, and M. Sugiyama, Confidence scores make instance-dependent label-noise learning possible, arXiv preprint arXiv:2001.03772, 2020. paper
-
Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu, Improving adversarial robustness requires revisiting misclassified examples, in ICLR, 2020. paper
-
J. Zhang, X. Xu, B. Han, G. Niu, L. Cui, M. Sugiyama, and M. Kankanhalli, Attacks which do not kill training make adversarial learning stronger, in ICML, 2020. paper
- Q. Yao, H. Yang, B. Han, G. Niu, J. Kwok. Searching to exploit memorization effect in learning from noisy labels, in ICML, 2020. paper code
-
J. Zhang, B. Han, L. Wynter, K. H. Low, and M. Kankanhalli, Towards robust resnet: A small step but a giant leap, in IJCAI, 2019. paper
-
B. Han, Y. Pan, and I. W. Tsang, Robust plackett–luce model for k-ary crowdsourced preferences, Machine Learning, vol. 107, no. 4, pp. 675–702, 2018. paper
-
Y. Pan, B. Han, and I.W. Tsang, Stagewise learning for noisy k-ary preferences, Machine Learning, vol. 107, no. 8-10, pp. 1333–1361, 2018. paper
-
F. Liu, J. Lu, B. Han, G. Niu, G. Zhang, and M. Sugiyama, Butterfly: A panacea for all difficulties in wildly unsupervised domain adaptation, arXiv preprint arXiv:1905.07720, 2019. paper
-
X. Yu, T. Liu, M. Gong, K. Zhang, K. Batmanghelich, and D. Tao, Label-noise robust domain adaptation, in ICML, 2020. paper
-
S. Wu, X. Xia, T. Liu, B. Han, M. Gong, N. Wang, H. Liu, and G. Niu, Multi-class classification from noisy-similarity-labeled data, arXiv preprint arXiv:2002.06508, 2020. paper
-
C. Wang, B. Han, S. Pan, J. Jiang, G. Niu, and G. Long, Crossgraph: Robust and unsupervised embedding for attributed graphs with corrupted structure, in ICDM, 2020. paper
-
Y.-H. Wu, N. Charoenphakdee, H. Bao, V. Tangkaratt, and M. Sugiyama, Imitation learning from imperfect demonstration, in ICML, 2019. paper
-
D. S. Brown, W. Goo, P. Nagarajan, and S. Niekum, Extrapolating beyond suboptimal demonstrations via inverse reinforcement learning from observations, in ICML, 2019. paper
-
J. Audiffren, M. Valko, A. Lazaric, and M. Ghavamzadeh, Maximum entropy semi-supervised inverse reinforcement learning, in IJCAI, 2015. paper
-
V. Tangkaratt, B. Han, M. E. Khan, and M. Sugiyama, Variational imitation learning with diverse-quality demonstrations, in ICML, 2020. paper