/explainable_qa

Implementation for https://arxiv.org/abs/2005.00652

Primary LanguagePython

Conciseness in Rationale Extraction with an Information Bottleneck

This repository contains code for the paper An Information Bottleneck Approach for Controlling Conciseness in Rationale Extraction by Bhargavi Paranjape, Mandar Joshi, John Thickstun, Hannaneh Hajishirzi, Luke Zettlemoyer. To run the code follow these instructions:

Installing Dependencies

To run this code, you'll need to install the libraries in requirements.txt : pip install -r requirements.txt

Downloading Datasets

To download ERASER : ./download_data.sh To download Beer review dataset : ./download_beer.sh To convert Beer dataset into ERASER format : {0} is replaced with absolute path to the main code directory.

python convert_to_eraser_format.py \
    --aspect 0
    --train_path ${0}/data/beer/reviews.aspect0.train.txt.gz \
    --dev_path ${0}/data/beer/reviews.aspect0.heldout.txt.gz \
    --test_path ${0}/research@uw/explainable_qa/data/beer/annotations.json \

To compress BoolQ documents, run for splits train,test and val:

mkdir data/boolq_inference_truncated
cd information_bottleneck
python truncate_dataset.py --data_dir ../data/boolq --split X --model_params ../params/gated_truefalse.json --truncate --max_num_sentences 25
cp -r ../data/boolq/docs ../data/boolq_truncated

To compress Evidence Inference documents, run for splits train,test and val:

mkdir data/evidence_inference_truncated
cd information_bottleneck
python truncate_dataset.py --data_dir ../data/evidence_inference --split test --model_params ../params/gated_evidence.json --truncate --max_num_sentences 20
cp -r ../data/evidence_inference/docs ../data/evidence_inference_truncated

Running Code

To run the Sparse prior approach on dataset X, run the appropriate run_sent_X.sh file. For example, to run our code Fever dataset, set {0} as the absolute path to the main code directory

cd information_bottleneck
./run_sent_fever.sh {0}

Model details

Some useful flags and options to run our model and baselines are explained below. In shell scripts the following arguments can be toggled:

  • --per_gpu_train_batch_size: batch size for training on one GPU
  • --per_gpu_eval_batch_size: batch size for evaluating on one GPU
  • --data_dir: Path to directory created when downloading data
  • --output_dir: Path to output directory to checkpoint and save trained model
  • --model_params: Path to .json file which has hyperparameter configuration
  • --model_type : Type of model in [distilbert_gated_sent, bert_gated_sent]
  • --max_num_sentences : Avg number of sentences in each example (NS)
  • --max_query_length : Fixed query length

Hyperparameters in paramss/*.json files can be toggled. To recreate results, please see TABLE 5 in the paper:

  • beta: Information bottleneck trade-off parameter
  • beta_norm : Lgrangian multiplier on norm-regularization losses
  • threshold : Sparsity parameter $\pi$
  • distribution : Choose between [binary, kumaraswamy]

Contact

For questions, contact Bhargavi Paranjape or raise issues.