/Capsule-Network-Keras

A Capsule Network implementation in pure Keras running on Tensorflow 2.0

Primary LanguagePython

Capsule Network Keras (Tensorflow 2.0)

This project aims to update the existing Capsule Network Architecture of bojone (which was designed after https://kexue.fm/archives/5112) to be working with Tensorflow 2.0 & improving usability with the generalized input like in my approach to update XifengGuo's Capsule Network to Tensorflow 2.0.

Rquirements

Tensorflow >= 2.0.0

How to use

python capsulenet.py -d training_data -n flower_model 

Performance test

python capsule_test.py

Parameters

--epochs

--batch_size'

-r, --routings = Number of iterations used in routing algorithm. Should be > 0

--capsule_dim = Dimmension of the Capsule Layer.

--debug = Save weights by TensorBoard (currently not working, may being deleted)

--save_dir

--tflite = Option to export the trained model in Tensorflow Lite.

-d, --directory = Directory where the training data is stored. Error if not assigned.

-n, --name = Name for the model with which it will be saved.

-vs, --validation_split = Fraction of images reserved for validation (strictly between 0 and 1).

###################### NOT fully implemented yet ###########################

--grayscale' = Changes Network from grayscale mode to RGB mode.

--rotation_range = Rotation range for data augmentation.

--horizontal_flip = Enables horizontal flip for data augmentation.

--width_shift_range = Widht shift range for data augmentation. Should be within -1.0 to +1.0.

--height_shift_range = Height shift range for data augmentation. Should be within -1.0 to +1.0.

--shear_range = Shear range for data augmentation.

--zoom_range = Zoom range for data augmentation.

not even implemented (comming in future itteration)

--channel_shift_range = Channel shift range for data augmentation.

--brightness_range = Brightness range for data augmentation.

Performance

Training

MINST Dataset

Graphics Card min time/epoch max time/epoch steps/epoch total training time
Nvidia GTX 1060M
Tesla T4 (Colab)

Interference

ToDo's

  • create "capsulenet.py" for generalized image input via ImageDataGenerator - working ✔
  • add possibility to save as .tflite file
  • create a load_model tutorial
  • add saving method for easier model loading
  • add benchmarks

old text

动态路由算法来自:https://kexue.fm/archives/5112

该版本的动态路由略微不同于Hinton原版,在“单数字训练、双数字测试”的准确率上有95%左右。

其他:

1、相比之前实现的版本:https://github.com/XifengGuo/CapsNet-Keras ,我的版本是纯Keras实现的(原来是半Keras半tensorflow);

2、通过K.local_conv1d函数替代了K.map_fn提升了好几倍的速度,这是因为K.map_fn并不会自动并行,要并行的话需要想办法整合到一个矩阵运算;

3、其次我通过K.conv1d实现了共享参数版的;

4、代码运行环境是Python2.7 + tensorflow 1.8 + keras 2.1.4

交流

QQ交流群:67729435,微信群请加机器人微信号spaces_ac_cn