This is the official code repository for NumNet+ (https://leaderboard.allenai.org/drop/submission/bm60vq8f7g2p7t2ld0j0) and NumNet+ v2 (https://leaderboard.allenai.org/drop/submission/bmfuq9e0v32fq8pskug0). NumNet (https://github.com/ranqiu92/NumNet) was used as a basis for our work.
If you use the code, please cite the following paper:
@inproceedings{ran2019numnet,
title={{NumNet}: Machine Reading Comprehension with Numerical Reasoning},
author={Ran, Qiu and Lin, Yankai and Li, Peng and Zhou, Jie and Liu, Zhiyuan},
booktitle={Proceedings of EMNLP},
year={2019}
}
pip install -r requirements.txt
-
Download drop data.
wget -O drop_dataset.zip https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip
unzip drop_dataset.zip
-
Download roberta model.
cd drop_dataset && mkdir roberta.large && cd roberta.large
wget -O pytorch_model.bin https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-pytorch_model.bin
-
Download roberta config file.
wget -O config.json https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-config.json
- Modify
config.json
from"output_hidden_states": false
to"output_hidden_states": true
.
- Modify
-
Download roberta vocab files.
wget -O vocab.json https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-vocab.json
wget -O merges.txt https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-merges.txt
-
Train with simple multi-span extraction (NumNet+).
sh train.sh 345 5e-4 1.5e-5 5e-5 0.01
-
Train with tag based multi-span extraction (NumNet+ v2, tag based multi-span paper: http://arxiv.org/abs/1909.13375, github: https://github.com/eladsegal/tag-based-multi-span-extraction).
sh train.sh 345 5e-4 1.5e-5 5e-5 0.01 tag_mspan
-
Save your model as model.pt.
-
Simple multi-span extraction (NumNet+).
sh eval.sh drop_dataset/drop_dataset_dev.json prediction.json
-
Tag based multi-span extraction (NumNet+ v2).
sh eval.sh drop_dataset/drop_dataset_dev.json prediction.json tag_mspan
python drop_eval.py --gold_path drop_dataset/drop_dataset_dev.json --prediction_path prediction.json
-