- 性能情况 Performance
- 所需环境 Environment
- 注意事项 Attention
- 文件下载 Download
- 预测步骤 How2predict
- 训练步骤 How2train
- miou计算 miou
- 参考资料 Reference
训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mIOU |
---|---|---|---|---|
VOC12+SBD | pspnet_mobilenetv2.pth | VOC-Val12 | 473x473 | 68.59 |
VOC12+SBD | pspnet_resnet50.pth | VOC-Val12 | 473x473 | 81.44 |
torch==1.2.0
代码中的pspnet_mobilenetv2.pth和pspnet_resnet50.pth是基于VOC拓展数据集训练的。训练和预测时注意修改backbone。
训练所需的pspnet_mobilenetv2.pth和pspnet_resnet50.pth可在百度网盘中下载。
链接: https://pan.baidu.com/s/1JX0BoAroPChBQrXYnybqzg 提取码: papc
VOC拓展数据集的百度网盘如下:
链接: https://pan.baidu.com/s/1BrR7AUM1XJvPWjKMIy2uEw 提取码: vszf
a、下载完库后解压,如果想用backbone为mobilenet的进行预测,直接运行predict.py就可以了;如果想要利用backbone为resnet50的进行预测,在百度网盘下载pspnet_resnet50.pth,放入model_data,修改pspnet.py的backbone和model_path之后再运行predict.py,输入。
img/street.jpg
可完成预测。
b、利用video.py可进行摄像头检测。
a、按照训练步骤训练。
b、在pspnet.py文件里面,在如下部分修改model_path和backbone使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,backbone是所使用的主干特征提取网络。
_defaults = {
"model_path" : 'model_data/pspnet_mobilenetv2.pth',
"model_image_size" : (473, 473, 3),
"backbone" : "mobilenet",
"downsample_factor" : 16,
"num_classes" : 21,
"cuda" : True,
"blend" : True,
}
c、运行predict.py,输入
img/street.jpg
可完成预测。
d、利用video.py可进行摄像头检测。
1、将我提供的voc数据集放入VOCdevkit中(无需运行voc2pspnet.py)。
2、在train.py中设置对应参数,默认参数已经对应voc数据集所需要的参数了,所以只要修改backbone和model_path即可。
3、运行train.py进行训练。
1、本文使用VOC格式进行训练。
2、训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的SegmentationClass中。
3、训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
4、在训练前利用voc2pspnet.py文件生成对应的txt。
5、在train.py文件夹下面,选择自己要使用的主干模型和下采样因子。本文提供的主干模型有mobilenet和resnet50。下采样因子可以在8和16中选择。需要注意的是,预训练模型需要和主干模型相对应。
6、注意修改train.py的num_classes为分类个数+1。
7、运行train.py即可开始训练。
参考miou计算视频和博客。
https://github.com/ggyyzm/pytorch_segmentation
https://github.com/bonlime/keras-deeplab-v3-plus