This is a PyTorch implementation of Generative Adversarial Active Learning
———— PyTorch-GAAL
|__ data # data directory
|__ gan # train and save DCGAN model
|__ oracle # pre-trained models act as human oracle
|__ plot
|__ main.py # Generate commmand to run train.py
|__ train.py # main training loop
|__ utils.py # toolbox
|__ requirements.txt # auto-generated dependencies file, usage: pip install -r requirements.txt
|__ README.md
Edit the parameters (dataset, label budget, etc.) in main.py, then:
python main.py
python 3.9.7 + pytorch 1.9.0 + torchvision 0.10.0 + cudatoolkit 10.2
- Experiment results on CIFAR-10
- Comparing with the SVMactive algorithm
[1] : PyTorch DCGAN Tutorial
[2] : DCGAN on CIFAR-10