My curated list of Python resources on Quantitative Finance
-
Jake VanderPlas (2016), Data Science Handbook: Essential Tools for Working with Data
-
Tony Guida (2019), Big Data and Machine Learning in Quantitative Investment
-
Wes McKinney (2018), Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython
-
Yves Hilpisch (2016), Listed Volatility and Variance Derivatives: A Python–based Guide
-
Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python–based Guide
-
Alphavantage - Python module to get stock data from the Alpha Vantage API.
-
Bloomberg Open API - Bloomberg Open API with pandas.
-
Eikon Data API - Python package for retrieving Eikon data.
-
IEX - Python module to get stock data from IEX Cloud and IEX API 1.0.
-
TWS API - Interactive Brokers interface to retrieve data and automate trading strategies.
-
YFinance - Yahoo! Finance market data downloader.
- QuantLib-Python - Backward-compatible meta-package for the QuantLib module.
-
Keras - Keras is a high-level neural networks API for Python.
-
NumPy - Fundamental package for array computing with Python.
-
Pandas - Powerful data structures for data analysis, time series, and statistics.
-
Scikit-Learn - Python modules for machine learning and data mining.
-
SciPy - Scientific Library for Python.
-
TensorFlow - Open source library for high performance numerical computation.
- Python Wheels - New standard of Python distribution.
- TA-Lib - Python wrapper for TA-Lib
- Backtrader - A feature-rich Python framework for backtesting and trading.
-
Bokeh - Interactive visualization library for modern web browsers.
-
BQPlot - Interactive plotting for the Jupyter notebook, using D3.js and IPywidgets.
-
Cufflinks - Productivity Tools for Plotly + Pandas.
-
IPywidgets - Interactive HTML widgets for Jupyter notebooks and the IPython kernel.
-
Matplotlib - Comprehensive library for creating static, animated, and interactive visualizations in Python.
-
Plotly - Open-source, interactive data visualization library for Python
-
Seaborn - Library for making statistical graphics in Python.