/SEENet

The Tensorflow implementation of SEENet (BMVC2019)

Primary LanguagePythonMIT LicenseMIT

SEE-Net

The Tensorflow implementation of "Order Matters: Shuffling Sequence Generation for Video Prediction" (BMVC2019) by Junyan Wang, Bingzhang Hu, Yang Long, Yu Guan.

Python packages

  • Python: 3.6.8
  • Tensorflow: 1.12.0
  • CUDA 9.0

Dataset & Pretrained Models

Make a directory ./data for saving models and a directory ./pretrained for pretrained models.

Train

Make a directory ./models for saving models and a directory ./logs for saving logs.

To train motion and content features:

python3 ./src/main.py --train_feature True --test False

To train predict part:

python3 ./src/main.py --train_feature False --test False

The predicted samples can be seen in ./samples folder. The detailed arguments can be set up in ./src/args.py

Test

python3 ./src/main.py --test True

The test predicted samples can be seen in ./samples/test folder

Examples

KTHexamples

Cite

If you use this code or reference our paper in your work please cite this publication as:

ArXiv Version:

@article{wang2019order,
  title={Order Matters: Shuffling Sequence Generation for Video Prediction},
  author={Wang, Junyan and Hu, Bingzhang and Long, Yang and Guan, Yu},
  journal={arXiv preprint arXiv:1907.08845},
  year={2019}
}

Poster