In order to unify the approaches followed for Bitnami containers and Bitnami Helm charts, we are moving the different bitnami/bitnami-docker-<container>
repositories to a single monorepo bitnami/containers
. Please follow bitnami/containers to keep you updated about the latest Bitnami images.
More information here: https://blog.bitnami.com/2022/07/new-source-of-truth-bitnami-containers.html
Apache Airflow Worker packaged by Bitnami
What is Apache Airflow Worker?
Apache Airflow is a tool to express and execute workflows as directed acyclic graphs (DAGs). Airflow workers listen to, and process, queues containing workflow tasks.
Overview of Apache Airflow Worker
Trademarks: This software listing is packaged by Bitnami. The respective trademarks mentioned in the offering are owned by the respective companies, and use of them does not imply any affiliation or endorsement.
TL;DR
Docker Compose
$ curl -LO https://raw.githubusercontent.com/bitnami/bitnami-docker-airflow-worker/master/docker-compose.yml
$ docker-compose up
You can find the default credentials and available configuration options in the Environment Variables section.
Why use Bitnami Images?
- Bitnami closely tracks upstream source changes and promptly publishes new versions of this image using our automated systems.
- With Bitnami images the latest bug fixes and features are available as soon as possible.
- Bitnami containers, virtual machines and cloud images use the same components and configuration approach - making it easy to switch between formats based on your project needs.
- All our images are based on minideb a minimalist Debian based container image which gives you a small base container image and the familiarity of a leading Linux distribution.
- All Bitnami images available in Docker Hub are signed with Docker Content Trust (DCT). You can use
DOCKER_CONTENT_TRUST=1
to verify the integrity of the images. - Bitnami container images are released on a regular basis with the latest distribution packages available.
Dockerfile
links
Supported tags and respective Learn more about the Bitnami tagging policy and the difference between rolling tags and immutable tags in our documentation page.
Subscribe to project updates by watching the bitnami/airflow GitHub repo.
Prerequisites
To run this application you need Docker Engine >= 1.10.0
. Docker Compose is recommended with a version 1.6.0
or later.
How to use this image
Airflow Worker is a component of an Airflow solution configuring with the CeleryExecutor
. Hence, you will need to rest of Airflow components for this image to work.
You will need an Airflow Webserver, an Airflow Scheduler, a PostgreSQL database and a Redis(R) server.
Using Docker Compose
The main folder of this repository contains a functional docker-compose.yml
file. Run the application using it as shown below:
$ curl -sSL https://raw.githubusercontent.com/bitnami/bitnami-docker-airflow-worker/master/docker-compose.yml > docker-compose.yml
$ docker-compose up -d
Using the Docker Command Line
If you want to run the application manually instead of using docker-compose
, these are the basic steps you need to run:
- Create a network
$ docker network create airflow-tier
- Create a volume for PostgreSQL persistence and create a PostgreSQL container
$ docker volume create --name postgresql_data
$ docker run -d --name postgresql \
-e POSTGRESQL_USERNAME=bn_airflow \
-e POSTGRESQL_PASSWORD=bitnami1 \
-e POSTGRESQL_DATABASE=bitnami_airflow \
--net airflow-tier \
--volume postgresql_data:/bitnami/postgresql \
bitnami/postgresql:latest
- Create a volume for Redis(R) persistence and create a Redis(R) container
$ docker volume create --name redis_data
$ docker run -d --name redis \
-e ALLOW_EMPTY_PASSWORD=yes \
--net airflow-tier \
--volume redis_data:/bitnami \
bitnami/redis:latest
- Launch the Apache Airflow Worker web container
$ docker run -d --name airflow -p 8080:8080 \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
-e AIRFLOW_LOAD_EXAMPLES=yes \
-e AIRFLOW_PASSWORD=bitnami123 \
-e AIRFLOW_USERNAME=user \
-e AIRFLOW_EMAIL=user@example.com \
--net airflow-tier \
bitnami/airflow:latest
- Launch the Apache Airflow Worker scheduler container
$ docker run -d --name airflow-scheduler \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
-e AIRFLOW_LOAD_EXAMPLES=yes \
--net airflow-tier \
bitnami/airflow-scheduler:latest
- Launch the Apache Airflow Worker worker container
$ docker run -d --name airflow-worker \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
-e AIRFLOW_QUEUE=new_queue \
--net airflow-tier \
bitnami/airflow-worker:latest
Access your application at http://your-ip:8080
Persisting your application
The Bitnami Airflow container relies on the PostgreSQL database & Redis to persist the data. This means that Airflow does not persist anything. To avoid loss of data, you should mount volumes for persistence of PostgreSQL data and Redis(R) data
The above examples define docker volumes namely postgresql_data
, and redis_data
. The Airflow application state will persist as long as these volumes are not removed.
To avoid inadvertent removal of these volumes you can mount host directories as data volumes. Alternatively you can make use of volume plugins to host the volume data.
Mount host directories as data volumes with Docker Compose
The following docker-compose.yml
template demonstrates the use of host directories as data volumes.
version: '2'
services:
postgresql:
image: 'bitnami/postgresql:latest'
environment:
- POSTGRESQL_DATABASE=bitnami_airflow
- POSTGRESQL_USERNAME=bn_airflow
- POSTGRESQL_PASSWORD=bitnami1
volumes:
- /path/to/postgresql-persistence:/bitnami
redis:
image: 'bitnami/redis:latest'
environment:
- ALLOW_EMPTY_PASSWORD=yes
volumes:
- /path/to/redis-persistence:/bitnami
airflow-worker:
image: bitnami/airflow-worker:latest
environment:
- AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho=
- AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08=
- AIRFLOW_EXECUTOR=CeleryExecutor
- AIRFLOW_DATABASE_NAME=bitnami_airflow
- AIRFLOW_DATABASE_USERNAME=bn_airflow
- AIRFLOW_DATABASE_PASSWORD=bitnami1
- AIRFLOW_LOAD_EXAMPLES=yes
airflow-scheduler:
image: bitnami/airflow-scheduler:latest
environment:
- AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho=
- AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08=
- AIRFLOW_EXECUTOR=CeleryExecutor
- AIRFLOW_DATABASE_NAME=bitnami_airflow
- AIRFLOW_DATABASE_USERNAME=bn_airflow
- AIRFLOW_DATABASE_PASSWORD=bitnami1
- AIRFLOW_LOAD_EXAMPLES=yes
airflow:
image: bitnami/airflow:latest
environment:
- AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho=
- AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08=
- AIRFLOW_EXECUTOR=CeleryExecutor
- AIRFLOW_DATABASE_NAME=bitnami_airflow
- AIRFLOW_DATABASE_USERNAME=bn_airflow
- AIRFLOW_DATABASE_PASSWORD=bitnami1
- AIRFLOW_PASSWORD=bitnami123
- AIRFLOW_USERNAME=user
- AIRFLOW_EMAIL=user@example.com
ports:
- '8080:8080'
Mount host directories as data volumes using the Docker command line
- Create a network (if it does not exist)
$ docker network create airflow-tier
- Create the PostgreSQL container with host volumes
$ docker run -d --name postgresql \
-e POSTGRESQL_USERNAME=bn_airflow \
-e POSTGRESQL_PASSWORD=bitnami1 \
-e POSTGRESQL_DATABASE=bitnami_airflow \
--net airflow-tier \
--volume /path/to/postgresql-persistence:/bitnami \
bitnami/postgresql:latest
- Create the Redis(R) container with host volumes
$ docker run -d --name redis \
-e ALLOW_EMPTY_PASSWORD=yes \
--net airflow-tier \
--volume /path/to/redis-persistence:/bitnami \
bitnami/redis:latest
- Create the Airflow container
$ docker run -d --name airflow -p 8080:8080 \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
-e AIRFLOW_LOAD_EXAMPLES=yes \
-e AIRFLOW_PASSWORD=bitnami123 \
-e AIRFLOW_USERNAME=user \
-e AIRFLOW_EMAIL=user@example.com \
--net airflow-tier \
bitnami/airflow:latest
- Create the Airflow Scheduler container
$ docker run -d --name airflow-scheduler \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
-e AIRFLOW_LOAD_EXAMPLES=yes \
--net airflow-tier \
bitnami/airflow-scheduler:latest
- Create the Airflow Worker container
$ docker run -d --name airflow-worker \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
--net airflow-tier \
bitnami/airflow-worker:latest
Configuration
Installing additional python modules
This container supports the installation of additional python modules at start-up time. In order to do that, you can mount a requirements.txt
file with your specific needs under the path /bitnami/python/requirements.txt
.
Environment variables
The Airflow Worker instance can be customized by specifying environment variables on the first run. The following environment values are provided to customize Airflow Worker:
Airflow Worker configuration
AIRFLOW_EXECUTOR
: Airflow Worker executor. Default: SequentialExecutorAIRFLOW_FERNET_KEY
: Airflow Worker Fernet key. No defaults.AIRFLOW_SECRET_KEY
: Airflow Worker Secret key. No defaults.AIRFLOW_WEBSERVER_HOST
: Airflow Worker webserver host. Default: airflowAIRFLOW_WEBSERVER_PORT_NUMBER
: Airflow Worker webserver port. Default: 8080AIRFLOW_HOSTNAME_CALLABLE
: Method to obtain the hostname. No defaults.AIRFLOW_QUEUE
: A queue for the worker to pull tasks from. No defaults.
Use an existing database
AIRFLOW_DATABASE_HOST
: Hostname for PostgreSQL server. Default: postgresqlAIRFLOW_DATABASE_PORT_NUMBER
: Port used by PostgreSQL server. Default: 5432AIRFLOW_DATABASE_NAME
: Database name that Airflow Worker will use to connect with the database. Default: bitnami_airflowAIRFLOW_DATABASE_USERNAME
: Database user that Airflow Worker will use to connect with the database. Default: bn_airflowAIRFLOW_DATABASE_PASSWORD
: Database password that Airflow Worker will use to connect with the database. No defaults.AIRFLOW_DATABASE_USE_SSL
: Set to yes if the database uses SSL. Default: noAIRFLOW_REDIS_USE_SSL
: Set to yes if Redis(R) uses SSL. Default: noREDIS_HOST
: Hostname for Redis(R) server. Default: redisREDIS_PORT_NUMBER
: Port used by Redis(R) server. Default: 6379REDIS_USER
: User that Airflow Worker will use to connect with Redis(R). No defaults.REDIS_PASSWORD
: Password that Airflow Worker will use to connect with Redis(R). No defaults.REDIS_DATABASE
: Database number for Redis(R) server. Default: 1
In addition to the previous environment variables, all the parameters from the configuration file can be overwritten by using environment variables with this format:
AIRFLOW__{SECTION}__{KEY}
. Note the double underscores.
Specifying Environment variables using Docker Compose
version: '2'
services:
airflow:
image: bitnami/airflow:latest
environment:
- AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho=
- AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08=
- AIRFLOW_EXECUTOR=CeleryExecutor
- AIRFLOW_DATABASE_NAME=bitnami_airflow
- AIRFLOW_DATABASE_USERNAME=bn_airflow
- AIRFLOW_DATABASE_PASSWORD=bitnami1
- AIRFLOW_PASSWORD=bitnami123
- AIRFLOW_USERNAME=user
- AIRFLOW_EMAIL=user@example.com
Specifying Environment variables on the Docker command line
$ docker run -d --name airflow -p 8080:8080 \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
-e AIRFLOW_PASSWORD=bitnami123 \
-e AIRFLOW_USERNAME=user \
-e AIRFLOW_EMAIL=user@example.com \
bitnami/airflow:latest
Notable Changes
1.10.15-debian-10-r18 and 2.0.1-debian-10-r51
- The size of the container image has been decreased.
- The configuration logic is now based on Bash scripts in the rootfs/ folder.
Contributing
We'd love for you to contribute to this container. You can request new features by creating an issue, or submit a pull request with your contribution.
Issues
If you encountered a problem running this container, you can file an issue. For us to provide better support, be sure to include the following information in your issue:
- Host OS and version
- Docker version (
$ docker version
) - Output of
$ docker info
- Version of this container
- The command you used to run the container, and any relevant output you saw (masking any sensitive information)
License
Copyright © 2022 Bitnami
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.