Learning to Color from Language, NAACL, 2018 (short)
-
Download data : https://obj.umiacs.umd.edu/learning_to_color/coco_colors.h5
-
Extract features from black-and-white images
python extract_image_features.py --input_h5_file coco_colors.h5 --output_h5_file image_features.h5
python extract_image_features.py --output_h5_file image_features.h5 -
Then run :
python autocolorize_resnet.py --h5_file coco_colors.h5 --features_file ./image_features.h5 --vocab_file_name ./priors/coco_colors_vocab.p --image_save_folder ./trial/ --model_save_file ./models/
python autocolorize_resnet.py --features_file ./image_features.h5 --image_save_folder ./trial/ --model_save_file ./models/ --data_size 1024
If you use this work, please cite:
@InProceedings{Manjunatha:Iyyer-ColorLanguage,
Title = {Learning to Color from Language},
Booktitle = {North American Chapter of the Association for Computational Linguistics},
Author = {Varun Manjunatha and Mohit Iyyer and Jordan Boyd-Graber and Larry Davis},
Year = {2018},
}