/A-Practical-Facial-Landmark-Detector

「Pytorch」<PFLD: A Practical Facial Landmark Detector>

Primary LanguagePython

A Practical Facial Landmark Detector

Introduction

Implementation of PFLD A Practical Facial Landmark Detector by pytorch.

1. Data preparation:

  • WFLW Dataset Download:
  • WFLW Face Annotations:
  • Steps:
    • Unzip above two packages and put them on ./data/WFLW/
    • Move ./data/Mirror98.txt to ./data/WFLW/WFLW_annotations
    • Run cd data
    • Run python3 SetPreparation.py

2. Train & Test Model:

  • Training steps:

    • Run tensorboard --logdir=/Your Path/checkpoint/tensorboard &
    • Run python3 train.py -h get usage
    • Run default parms python train.py
    • Checkpoint checkpoint_epoch_x.pth.tarin./checkpoint/snapshot/
    • You can get training log file from ./checkpoint/train.logs
  • Testing steps:

    • Run python test.py -h get usage
    • Run default parms python test.py
  • Camera realtime show:

    • Run python camera.py

Result

Reference