/AI-ML-cheatsheets

Cheatsheets for AI and Machine Learning

AI-ML-cheatsheets

This GitHub repository gathers the most popular cheatsheets and quick reference guides for Artificial Intelligence (AI) and Machine learning (ML). AI-ML-cheatsheets

Google Drive

For an ease of download and browse over the files, a Google Drive version of this GitHub repository is available here.

AI-ML-roadmap

The global structure of this GitHub repository follows to some extent the following AI and Machine Learning roadmap. AI-ML-roadmap

The structure of the folder

The content of the folder

  • 01- Mathematics
    • Calculus cheat sheet all reduced
    • Calculus cheat sheet
    • Linear Algebra in 4 pages
    • Probability cheat sheet
    • Probability distribution cheat sheet
    • Statistics cheat sheet
    • Super-cheatsheet-mathematics
    • Summary statistics
  • 02- C++
    • C++ Reference Card
    • C++ Libraries
    • C++ OOP Reference Card
  • 03- Python
    • Python for Beginners
    • Python Reference Cheatsheet
    • Python cheatsheet
    • Python for Data Science cheatsheet
    • Numpy cheatsheet
    • Pandas cheatsheet 1
    • Pandas cheatsheet 2
    • Matplotlib cheatsheet 1
    • Matplotlib cheatsheet 2
    • Scikit-Learn cheatsheet
    • List, Tuples, Sets, Dictionary
    • Tutorial Python
  • 04- Computer architecture
    • Computer organisation cheatsheet
  • 05- Data structures
    • Classification of Data structures
    • Data structures
    • Complexity
    • Resources
  • 06- Automata theory
    • Languages and Automata cheathseet
    • Automata cheatsheet
    • Context-Free Grammar cheatsheet
  • 06- Complexity theory
    • Complexity Theory Cheat Sheet
    • Computability Theory Cheat Sheet
  • 07- SQL
    • SQL-quick-guide
    • SQL operations
    • SQL query execution order
    • SQL commands
    • SQL-basics-cheat-sheet-a4
    • SQL joins-cheat-sheet-a4
    • Study-guide-data-retrieval-with-SQL
    • SQL Roadmap
  • 08- Data cleaning
    • Data-cleaning-checklist
    • Data-cleaning-guide
    • Data-preparation-cheatsheet
    • Feature engineering
    • Feature-selection-methods
    • Hypothesis-testing-cheatsheet
  • 09- Data visualization
    • Core principles of Data Visualization
    • Visual Vocabulary
    • Data visualization cheatsheet
    • The chart chooser
    • From Data to Visualization
  • 10- Mathematical logic
    • cheatsheet-logic-models
  • 11- Introduction to AI
    • cheatsheet-states-models
    • cheatsheet-variables-models
  • 12- Machine learning
    • Machine learning process
    • Machine-learning-map
    • Machine learning algorithms
    • How to choose a ML algorithm 1
    • How to choose a ML algorithm 2
    • Time complexity of ML algorithms
    • Comparison of ML algorithms 1
    • Comparison of ML algorithms 2
    • Comparison of ML algorithms 3
    • Comparison of ML algorithms 4
    • Comparison of ML algorithms 5
    • super-cheatsheet-machine-learning
    • Machine learning cheatsheets
    • Machine learning explainability
    • Machine learning operations MLOps
  • 13- Deep learning
    • super-cheatsheet-deep-learning
    • Large Language Models cheatsheet
    • main types of neural networks
    • Architecture - Classification MLP
    • Architecture - Regression MLP
    • Activation Function - Hidden Layer
    • Activation Function - Output Layer
    • Activation Functions
  • 14- Metrics to evaluate ML algorithms
    • Metrics-machine-learning
    • Performance-measure-machine-learning
  • 15- Reinforcement learning
    • Reinforcement learning cheatsheet 1
    • Reinforcement learning cheatsheet 2
  • 16- Time series
    • Time-series-cheat-sheet
  • 17- Git
    • Git-cheat-sheet
    • Git-cheat-sheet 2