/mql5-json-api

MQL5-JSON-API server for trading community

Primary LanguageMQL5GNU General Public License v3.0GPL-3.0

Metatrader MQL5 - JSON - API

Development state: first stable release

Tested on Windows 10.

Working in testing mode on Windows 10.

Still under development.

Table of Contents

About the Project

The initial project was a forked from Metaquotes MQL5 - JSON - API (all credit to Khramkov efforts, thank you!), but the actual code and its compatibility is far enought to start a new project.

This project is a server for the Metatrader trading community. It is based on ZeroMQ sockets and uses JSON format to communicate. We usually use it with Python clients, but you can use it with any programming language that has ZeroMQ binding.

Backtrader Python client is located here: Python Metatrader - Backtrader - API

In development:

  • Devitation
  • Stop limit orders

Installation

  1. Install ZeroMQ for MQL5 https://github.com/dingmaotu/mql-zmq
  2. Put include/JsonAPI from this repo to your MetaEditor include folder.
  3. Put experts/JsonAPI.mq5 from this repo to your MetaEditor experts folder.
  4. Compile JsonAPI.mq5
  5. Check if Metatrader 5 automatic trading is allowed.
  6. Attach the script to a chart in Metatrader 5.
  7. Allow DLL import in dialog window.
  8. Check if the ports are free to use. (default:15555,15556, 15557,15558)

Documentation

The script uses four ZeroMQ sockets:

  1. System socket - receives requests from client and replies 'OK'
  2. Data socket - pushes data to client depending on the request via System socket.
  3. Live socket - automatically pushes last candle when it closes.
  4. Streaming socket - automatically pushes last transaction info every time it happens.

The idea is to send requests via System socket and receive results/errors via Data socket. Event handlers should be created for Live socket and Streaming socket because the server sends data to theese sockets automatically. See examples in Live data and streaming events section.

System socket request uses default JSON dictionary:

{
	"action": null,
	"actionType": null,
	"symbol": null,
	"chartTF": null,
	"fromDate": null,
	"toDate": null,
	"id": null,
	"magic": null,
	"volume": null,
	"price": null,
	"stoploss": null,
	"takeprofit": null,
	"expiration": null,
	"deviation": null,
	"comment": null
}

Check out the available combinations of action and actionType:

action actionType Description
ACCOUNT null Get account settings
BALANCE null Get current balance
POSITIONS null Get current open positions
ORDERS null Get current open orders
HISTORY DATA Get data history
HISTORY TRADES Get trades history
TRADE ORDER_TYPE_BUY Buy market
TRADE ORDER_TYPE_SELL Sell market
TRADE ORDER_TYPE_BUY_LIMIT Buy limit
TRADE ORDER_TYPE_SELL_LIMIT Sell limit
TRADE ORDER_TYPE_BUY_STOP Buy stop
TRADE ORDER_TYPE_SELL_STOP Sell stop
TRADE POSITION_MODIFY Position modify
TRADE POSITION_PARTIAL Position close partial
TRADE POSITION_CLOSE_ID Position close by id
TRADE POSITION_CLOSE_SYMBOL Positions close by symbol
TRADE ORDER_MODIFY Order modify
TRADE ORDER_CANCEL Order cancel

Python 3 API class example:

import zmq

class MTraderAPI:
    def __init__(self, host=None):
        self.HOST = host or 'localhost'
        self.SYS_PORT = 15555       # REP/REQ port
        self.DATA_PORT = 15556      # PUSH/PULL port
        self.LIVE_PORT = 15557      # PUSH/PULL port
        self.EVENTS_PORT = 15558    # PUSH/PULL port

        # ZeroMQ timeout in seconds
        sys_timeout = 1
        data_timeout = 10

        # initialise ZMQ context
        context = zmq.Context()

        # connect to server sockets
        try:
            self.sys_socket = context.socket(zmq.REQ)
            # set port timeout
            self.sys_socket.RCVTIMEO = sys_timeout * 1000
            self.sys_socket.connect('tcp://{}:{}'.format(self.HOST, self.SYS_PORT))

            self.data_socket = context.socket(zmq.PULL)
            # set port timeout
            self.data_socket.RCVTIMEO = data_timeout * 1000
            self.data_socket.connect('tcp://{}:{}'.format(self.HOST, self.DATA_PORT))
        except zmq.ZMQError:
            raise zmq.ZMQBindError("Binding ports ERROR")

    def _send_request(self, data: dict) -> None:
        """Send request to server via ZeroMQ System socket"""
        try:
            self.sys_socket.send_json(data)
            msg = self.sys_socket.recv_string()
            # terminal received the request
            assert msg == 'OK', 'Something wrong on server side'
        except AssertionError as err:
            raise zmq.NotDone(err)
        except zmq.ZMQError:
            raise zmq.NotDone("Sending request ERROR")

    def _pull_reply(self):
        """Get reply from server via Data socket with timeout"""
        try:
            msg = self.data_socket.recv_json()
        except zmq.ZMQError:
            raise zmq.NotDone('Data socket timeout ERROR')
        return msg

    def live_socket(self, context=None):
        """Connect to socket in a ZMQ context"""
        try:
            context = context or zmq.Context.instance()
            socket = context.socket(zmq.PULL)
            socket.connect('tcp://{}:{}'.format(self.HOST, self.LIVE_PORT))
        except zmq.ZMQError:
            raise zmq.ZMQBindError("Live port connection ERROR")
        return socket

    def streaming_socket(self, context=None):
        """Connect to socket in a ZMQ context"""
        try:
            context = context or zmq.Context.instance()
            socket = context.socket(zmq.PULL)
            socket.connect('tcp://{}:{}'.format(self.HOST, self.EVENTS_PORT))
        except zmq.ZMQError:
            raise zmq.ZMQBindError("Data port connection ERROR")
        return socket

    def construct_and_send(self, **kwargs) -> dict:
        """Construct a request dictionary from default and send it to server"""

        # default dictionary
        request = {
            "action": None,
            "actionType": None,
            "symbol": None,
            "chartTF": None,
            "fromDate": None,
            "toDate": None,
            "id": None,
            "magic": None,
            "volume": None,
            "price": None,
            "stoploss": None,
            "takeprofit": None,
            "expiration": None,
            "deviation": None,
            "comment": None
        }

        # update dict values if exist
        for key, value in kwargs.items():
            if key in request:
                request[key] = value
            else:
                raise KeyError('Unknown key in **kwargs ERROR')

        # send dict to server
        self._send_request(request)

        # return server reply
        return self._pull_reply()

Usage

All examples will be on Python 3. Lets create an instance of MetaTrader API class:

api = MTraderAPI()

First of all we shouldn't configure the script with account parameters because this step is included in the expert parameters.

Get information about the trading account.

rep = api.construct_and_send(action="ACCOUNT")
print(rep)

Get historical data. fromDate should be in timestamp format. The data will be loaded to the last candle if toDate is None. Notice, that the script sends the last unclosed candle too. You should delete it manually.

rep = api.construct_and_send(action="HISTORY", actionType="DATA", symbol="EURUSD", chartTF="M5", fromDate=1555555555)
print(rep)

History data reply example:

{'data': [[1560782340, 1.12271, 1.12288, 1.12269, 1.12277, 46.0],[1560782400, 1.12278, 1.12299, 1.12276, 1.12297, 43.0],[1560782460, 1.12296, 1.12302, 1.12293, 1.123, 23.0]]}

Buy market order.

rep = api.construct_and_send(action="TRADE", actionType="ORDER_TYPE_BUY", symbol="EURUSD", "volume"=0.1, "stoploss"=1.1, "takeprofit"=1.3)
print(rep)

Sell limit order. Remember to switch SL/TP depending on BUY/SELL, or you will get invalid stops error.

  • BUY: SL < price < TP
  • SELL: SL > price > TP
rep = api.construct_and_send(action="TRADE", actionType="ORDER_TYPE_SELL_LIMIT", symbol="EURUSD", "volume"=0.1, "price"=1.2, "stoploss"=1.3, "takeprofit"=1.1)
print(rep)

All pending orders are set to Good till cancel by default. If you want to set an expiration date, pass the date in timestamp format to expiration param.

rep = api.construct_and_send(action="TRADE", actionType="ORDER_TYPE_SELL_LIMIT", symbol="EURUSD", "volume"=0.1, "price"=1.2, "expiration"=1560782460)
print(rep)

Live data and streaming events

Event handler example for Live socket and Data socket.

import zmq
import threading

api = MTraderAPI()


def _t_livedata():
    socket = api.live_socket()
    while True:
        try:
            last_candle = socket.recv_json()
        except zmq.ZMQError:
            raise zmq.NotDone("Live data ERROR")
        print(last_candle)


def _t_streaming_events():
    socket = api.streaming_socket()
    while True:
        try:
            trans = socket.recv_json()
            request, reply = trans.values()
        except zmq.ZMQError:
            raise zmq.NotDone("Streaming data ERROR")
        print(request)
        print(reply)



t = threading.Thread(target=_t_livedata, daemon=True)
t.start()

t = threading.Thread(target=_t_streaming_events, daemon=True)
t.start()

while True:
    pass

There are only two variants of Live socket data. When everything is ok, the script sends data on candle close:

{"status":"CONNECTED","data":[1560780120,1.12186,1.12194,1.12186,1.12191,15.00000]}

If the terminal has lost connection to the market:

{"status":"DISCONNECTED"}

When the terminal reconnects to the market, it sends the last closed candle again. So you should update your historical data. Make the action="HISTORY" request with fromDate equal to your last candle timestamp before disconnect.

OnTradeTransaction function is called when a trade transaction event occurs. Streaming socket sends TRADE_TRANSACTION_REQUEST data every time it happens. Try to create and modify orders in the MQL5 terminal manually and check the expert logging tab for better understanding. Also see MQL5 docs.

TRADE_TRANSACTION_REQUEST request data:

{
	'action': 'TRADE_ACTION_DEAL', 
	'order': 501700843, 
	'symbol': 'EURUSD', 
	'volume': 0.1, 
	'price': 1.12181, 
	'stoplimit': 0.0, 
	'sl': 1.1, 
	'tp': 1.13, 
	'deviation': 10, 
	'type': 'ORDER_TYPE_BUY', 
	'type_filling': 'ORDER_FILLING_FOK', 
	'type_time': 'ORDER_TIME_GTC', 
	'expiration': 0, 
	'comment': None, 
	'position': 0, 
	'position_by': 0
}

TRADE_TRANSACTION_REQUEST result data:

{
	'retcode': 10009, 
	'result': 'TRADE_RETCODE_DONE', 
	'deal': 501700843, 
	'order': 501700843, 
	'volume': 0.1, 
	'price': 1.12181, 
	'comment': None, 
	'request_id': 8, 
	'retcode_external': 0
}

Error handling

First of all, when you send a command via System socket, you should always receive back "OK" message via System socket. It means that your command was received and deserialized.

All data that come through Data socket have an error param. This param will have true key if somethng goes wrong. Also, there will be description and function params. They will hold information about error and the name of the function with error.

This information also applies to the trade commands. See MQL5 docs for possible server answers.

License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE for more information.