Bringing open data to affordable housing decision makers
Welcome! If you're just arriving at this project, we recommend you check out our info website for a project summary and the getting started 'Resources' section for new contributors to the project.
If you're already up to speed and are ready to start contributing, read on for installation and setup instructions.
\docs
A Jekyll-based static website that is used as a project informational page while developing the project.
\insights-site
The tool itself. Currently a single-page static website.
\insights-site\data
: flat files exported from the scripts/analysis section that are used directly by the javascript in the site. Larger files that need to be queryable should instead be uploaded to CKAN to provide an API.
\scripts
Folder for Python scripts used for processing data sources. Output of the any scripts should be directed to the \insights-site\data folder. In production, this data will be uploaded to CKAN.
\mockups
Store any brainstorming, images, pictures of napkin drawings, or other ideas for implementation here. "Live mockups" during the prototype phase, i.e. code-based mockups, can typically go directly into the insights-site folder instead.
This is very much a work in progress so any suggestions to clean up or change this approach are welcome! Currently we are planning to use a static website approach to the final product, unless it becomes necessary to have a server back end. There is a fundamental separation between processing scripts (which perform one-time analysis) and the live site (which uses output of this analysis).
- Any tabular data sources that need to be analyzed should be loaded into our PostgreSQL server on Amazon, so that they are easily accessible to all users without having to re-download or process them.
- Python code (or plain SQL if necessary) should perform all data upload and analysis queries, so that ingestion scripts can be re-run any time they are needed.
- Final analysis scripts should output flat files (JSON or CSV) that can be used by the Javascript from the insights-site/data folder or uploaded to a CDN or CKAN.
The local environment setup you need depends on which part of the project you want to contribute to:
- Everyone needs Git
- Front-end work just needs some sort of local static file server. We recommend the Python
http.server
but any other alternative will work, including Jekyll. - Data processing scripts need Python3, preferably via Anaconda.
- Our data is loaded into an Amazon RDS database, so if you want to do manual SQL or if you want to run scripts that connect to it you'll need the log in credentials.
- The informational website (
/docs
) requires Jekyll.
Start by forking the repo, and cloning your fork to your local machine. Follow the instructions on our CONTRIBUTING.md page (and read our conventions if you haven't yet).
New to Git? You'll definitely need Git on your computer.
- Download Git
If you're new to using Git, we also recommend getting a GUI client. Consider GitX-dev for Mac, Git Extensions for Windows, or SourceTree for either. And, you'll want to read up on some Git resources and practice pulling, pushing, and making a pull request.
If you're just contributing to the front end of our web tool, all you'll need is a simple web server.
- Install Miniconda (or Anaconda) - links below.
- Open a command prompt, and
> cd \path\to\your\repocopy\insights-site
> python -m http.server
- Open a browser at the path listed (probably
http://localhost:8000/
)
This project uses Python 3 (3.5.2 specifically). If you don't have Python 3 installed already, we recommend using the Anaconda distribution.
- Download Miniconda. This is the best choice if you are at a Code for DC Hacknight and have limited bandwidth.
- OR download Anaconda. Has lots of extra commonly used Python packages. Select the Python 3.5 version.
Then, you'll want to re-create the virtual environment using the environments.yml file in the /scripts
folder.
-
Navigate to the local repository folder in your command prompt
-
conda env create -f environment.yml
on the command line to create the new environment. -
Wait while it installs packages
-
type
conda info --envs
to see a list of all your environments - there should be a new one called housing-risk. Anaconda by default stores all environments in one location on your computer, so instead of saving it in the project folder it will be saved elsewhere, so it is named after the project (instead of the generic env name). -
activate housing-insights
(windows) orsource activate housing-insights
(mac) to start your virtual environment -
Check install went ok:
conda list
to see installed packages - you should have just a few, including pandas, numpy, etc.python --version
- should return 3.5.2
Important notes:
- Any time you are running the project, activate the environment first
- Any time you add a new package to the code(
import mypackage
), you'll need to install it in the environment and then re-export the environment.yml file. Useconda env export > environment.yml
- Any time you see that the environment.yml has been updated in git, you'll need to remove and rebuild the environment (or, manually install the new packages). Use
conda remove --name housing-risk --all
and thenconda env create -f environment.yml
to rebuild.
- Server: housing-insights-raw.ccmqak7fm8oa.us-east-1.rds.amazonaws.com
- Port: 5432
- Ask Neal for login credentials
Jekyll is a static website templating engine. This means you can have a simple, static website but still get the benefits of reusing your HTML code on different pages of a website. It also powers Github Pages, where we host our info site.
- Follow the install instructions for your operating system on the Jekyll website. Note, we don't currently use CoffeeScript so NodeJS is unnecessary.
- Open a command line and
> cd \path\to\housing-insights\docs
- Run
> jekyll serve
- Open a browser at the path listed (probably
http://localhost:4000
)