/DMIS_mammo

Repository for the 2017 Digital Mammography DREAM Challenge

Primary LanguageOpenEdge ABL

DMIS-mammo

Repository for the 2017 Digital Mammography DREAM Challenge

Requirements

See the installation instruction for a step-by-step installation guide. See the server instruction for server setup.

$ luarocks install cutorch
$ luarocks install xlua
$ luarocks install optnet

Directions and datasets

  • Calcification-Classifier : Classification whether the ROI region of calcification is malignant/benign.
  • Mass-Classifier : Classification whether the ROI region of mass is malignant/benign.
  • ornot-Calcification : Deciding whether the given window is a calcification ROI.
  • ornot-Mass : Deciding whether the given window is a mass ROI.

Description of each modules

1. calcification-classifier

alt_tag alt_tag

The input of the calcification-classifier will be a square window of the ROI region of 'calcification'. ROI regions will be extracted according to the heatmap derived from ornot_calcification.

  • Input size : 256 x 256
  • Crop size : 224 x 224
  • Model : Fine-tuned Residual Network 50 (ILSVRC-2012)
  • Best acc : 80%

2. mass-classifier

alt_tag alt_tag

The input of the mass-classifier will be a square window of the ROI region of 'mass'. ROI regions will be extracted according to

Total score = (Faster-RCNN results) + (Distance comparison of CC, MLO views) + ([ornot-Mass](./ornot-Mass/) results)

of the 'mass' regions in our private dataset.

  • Input size : 256 x 256
  • Crop size : 224 x 224
  • Model : Fine-tuned Residual Network 50 (ILSVRC-2012)
  • Best acc : None

3. ornot-calcification

The input of the ornot-calcification will be a tiny window of the suspected region of 'calcification'. Regions will be extracted according to Faster-RCNN training of the 'calcification' regions in our private dataset.

  • Input size : 36 x 36
  • Crop size : 32 x 32
  • Model : Wide-Residual-Network 28x10
  • Best acc : 96%

4. ornot-mass

The input of the ornot-mass will be a square window of the suspected region of 'mass'. Regions will be extracted according to Faster-RCNN training of the 'Mass' regions in our private dataset.

  • Input size : 256 x 256
  • Crop size : 224 x 224
  • Model : Fine-tuned Residual Network 50 (ILSVRC-2012)
  • Best acc : 83%