Xorbits Inference(Xinference) is a powerful and versatile library designed to serve language, speech recognition, and multimodal models. With Xorbits Inference, you can effortlessly deploy and serve your or state-of-the-art built-in models using just a single command. Whether you are a researcher, developer, or data scientist, Xorbits Inference empowers you to unleash the full potential of cutting-edge AI models.
- Incorporate vLLM: #445
- Embedding model support: #418
- LoRA support: #271
- Multi-GPU support for PyTorch models: #226
- Xinference dashboard: #93
- Built-in support for internlm-20b: #486
- Built-in support for internlm-chat-20b: #486
- Built-in support for CodeLLama: #414 #402
- Dify: an LLMOps platform that enables developers (and even non-developers) to quickly build useful applications based on large language models, ensuring they are visual, operable, and improvable.
- Chatbox: a desktop client for multiple cutting-edge LLM models, available on Windows, Mac and Linux.
π Model Serving Made Easy: Simplify the process of serving large language, speech recognition, and multimodal models. You can set up and deploy your models for experimentation and production with a single command.
β‘οΈ State-of-the-Art Models: Experiment with cutting-edge built-in models using a single command. Inference provides access to state-of-the-art open-source models!
π₯ Heterogeneous Hardware Utilization: Make the most of your hardware resources with ggml. Xorbits Inference intelligently utilizes heterogeneous hardware, including GPUs and CPUs, to accelerate your model inference tasks.
βοΈ Flexible API and Interfaces: Offer multiple interfaces for interacting with your models, supporting RPC, RESTful API(compatible with OpenAI API), CLI and WebUI for seamless management and monitoring.
π Distributed Deployment: Excel in distributed deployment scenarios, allowing the seamless distribution of model inference across multiple devices or machines.
π Built-in Integration with Third-Party Libraries: Xorbits Inference seamlessly integrates with popular third-party libraries including LangChain, LlamaIndex, Dify, and Chatbox.
Xinference can be installed via pip from PyPI. It is highly recommended to create a new virtual environment to avoid conflicts.
$ pip install "xinference"
xinference
installs basic packages for serving models.
To serve ggml models, you need to install the following extra dependencies:
$ pip install "xinference[ggml]"
If you want to achieve acceleration on different hardware, refer to the installation documentation of the corresponding package.
- llama-cpp-python is required to run
baichuan
,wizardlm-v1.0
,vicuna-v1.3
andorca
. - chatglm-cpp-python is required to run
chatglm
andchatglm2
.
To serve PyTorch models, you need to install the following extra dependencies:
$ pip install "xinference[pytorch]"
If you want to serve all the supported models, install all the dependencies:
$ pip install "xinference[all]"
You can deploy Xinference locally with a single command or deploy it in a distributed cluster.
To start a local instance of Xinference, run the following command:
$ xinference
To deploy Xinference in a cluster, you need to start a Xinference supervisor on one server and Xinference workers on the other servers. Follow the steps below:
Starting the Supervisor: On the server where you want to run the Xinference supervisor, run the following command:
$ xinference-supervisor -H "${supervisor_host}"
Replace ${supervisor_host}
with the actual host of your supervisor server.
Starting the Workers: On each of the other servers where you want to run Xinference workers, run the following command:
$ xinference-worker -e "http://${supervisor_host}:9997"
Once Xinference is running, an endpoint will be accessible for model management via CLI or Xinference client.
- For local deployment, the endpoint will be
http://localhost:9997
. - For cluster deployment, the endpoint will be
http://${supervisor_host}:9997
, where${supervisor_host}
is the hostname or IP address of the server where the supervisor is running.
You can also view a web UI using the Xinference endpoint to chat with all the builtin models.
Xinference provides a command line interface (CLI) for model management. Here are some useful commands:
- Launch a model (a model UID will be returned):
xinference launch
- List running models:
xinference list
- List all the supported models:
xinference registrations
- Terminate a model:
xinference terminate --model-uid ${model_uid}
Xinference also provides a client for managing and accessing models programmatically:
from xinference.client import Client
client = Client("http://localhost:9997")
model_uid = client.launch_model(model_name="chatglm2")
model = client.get_model(model_uid)
chat_history = []
prompt = "What is the largest animal?"
model.chat(
prompt,
chat_history,
generate_config={"max_tokens": 1024}
)
Result:
{
"id": "chatcmpl-8d76b65a-bad0-42ef-912d-4a0533d90d61",
"model": "56f69622-1e73-11ee-a3bd-9af9f16816c6",
"object": "chat.completion",
"created": 1688919187,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "The largest animal that has been scientifically measured is the blue whale, which has a maximum length of around 23 meters (75 feet) for adult animals and can weigh up to 150,000 pounds (68,000 kg). However, it is important to note that this is just an estimate and that the largest animal known to science may be larger still. Some scientists believe that the largest animals may not have a clear \"size\" in the same way that humans do, as their size can vary depending on the environment and the stage of their life."
},
"finish_reason": "None"
}
],
"usage": {
"prompt_tokens": -1,
"completion_tokens": -1,
"total_tokens": -1
}
}
See examples for more examples.
To view the builtin models, run the following command:
$ xinference registrations
Type | Name | Language | Ability |
---|---|---|---|
LLM | baichuan | ['en', 'zh'] | ['embed', 'generate'] |
LLM | baichuan-2 | ['en', 'zh'] | ['embed', 'generate'] |
LLM | baichuan-chat | ['en', 'zh'] | ['embed', 'chat'] |
LLM | baichuan-2-chat | ['en', 'zh'] | ['embed', 'chat'] |
LLM | chatglm | ['en', 'zh'] | ['embed', 'chat'] |
LLM | chatglm2 | ['en', 'zh'] | ['embed', 'chat'] |
LLM | chatglm2-32k | ['en', 'zh'] | ['embed', 'chat'] |
LLM | code-llama | ['en'] | ['generate'] |
LLM | code-llama-instruct | ['en'] | ['chat'] |
LLM | code-llama-python | ['en'] | ['generate'] |
LLM | falcon | ['en'] | ['embed', 'generate'] |
LLM | falcon-instruct | ['en'] | ['embed', 'chat'] |
LLM | glaive-coder | ['en'] | ['chat'] |
LLM | gpt-2 | ['en'] | ['generate'] |
LLM | internlm-7b | ['en', 'zh'] | ['embed', 'generate'] |
LLM | internlm-chat-7b | ['en', 'zh'] | ['embed', 'chat'] |
LLM | internlm-chat-20b | ['en', 'zh'] | ['embed', 'chat'] |
LLM | llama-2 | ['en'] | ['embed', 'generate'] |
LLM | llama-2-chat | ['en'] | ['embed', 'chat'] |
LLM | opt | ['en'] | ['embed', 'generate'] |
LLM | orca | ['en'] | ['embed', 'chat'] |
LLM | qwen-chat | ['en', 'zh'] | ['embed', 'chat'] |
LLM | starchat-beta | ['en'] | ['embed', 'chat'] |
LLM | starcoder | ['en'] | ['generate'] |
LLM | starcoderplus | ['en'] | ['embed', 'generate'] |
LLM | vicuna-v1.3 | ['en'] | ['embed', 'chat'] |
LLM | vicuna-v1.5 | ['en'] | ['embed', 'chat'] |
LLM | vicuna-v1.5-16k | ['en'] | ['embed', 'chat'] |
LLM | wizardlm-v1.0 | ['en'] | ['embed', 'chat'] |
LLM | wizardmath-v1.0 | ['en'] | ['embed', 'chat'] |
LLM | OpenBuddy | ['en', 'zh'] | ['embed', 'chat'] |
For in-depth details on the built-in models, please refer to built-in models.
NOTE:
- Xinference will download models automatically for you, and by default the models will be saved under
${USER}/.xinference/cache
. - If you have trouble downloading models from the Hugging Face, run
export XINFERENCE_MODEL_SRC=modelscope
to download models from modelscope. Models supported by modelscope:- llama-2
- llama-2-chat
- baichuan-2
- baichuan-2-chat
- chatglm2
- chatglm2-32k
- internlm-chat-20b
Please refer to custom models.