TextSentiment is a Python library for text preprocessing and sentiment analysis. It provides a user-friendly API for chaining preprocessing tasks, supports multiple languages and text formats, and integrates with major NLP libraries.
- Easy-to-use API for text preprocessing
- Support for multiple languages and text formats
- Simple interface for sentiment analysis using pre-trained models
- Integration with popular NLP libraries like spaCy, NLTK, and gensim
To install TextSentiment, simply run:
pip install textsentiment
from textsentiment import PreprocessingPipeline, SentimentAnalyzer
# Create a preprocessing pipeline
pipeline = PreprocessingPipeline()
pipeline.add_tokenizer()
pipeline.add_stemmer()
pipeline.add_lemmatizer()
pipeline.add_stopword_removal()
# Process input text
processed_text = pipeline.process(input_text)
# Perform sentiment analysis
analyzer = SentimentAnalyzer(model="en_core_web_sm")
sentiment_score = analyzer.analyze(processed_text)
print(f"Sentiment score: {sentiment_score}")
For more detailed documentation and examples, please visit our project website.
We welcome contributions to TextSentiment! If you're interested in contributing, please check out our contributing guidelines.
TextSentiment is released under the MIT License.