ZeNu is a simple and intuitive deep learning library written in Rust. It provides the building blocks for creating and training neural networks, with a focus on ease of use and flexibility.
ZeNu comes from 冒頓単于(bokutotuzennu)
Please note that ZeNu is currently under active development and may undergo significant changes.
- Autograd engine for automatic differentiation
- Tensor operations and linear algebra utilities
- Neural network layers and model definition
- Optimizers for training models
- Modular design for easy extensibility
To use ZeNu in your Rust project, add the following to your Cargo.toml
file:
[dependencies]
zenu = "0.1.0"
Here's a simple example of defining and training a model using ZeNu:
use zenu::{
dataset::{train_val_split, DataLoader, Dataset},
mnist::minist_dataset,
update_parameters, Model,
};
use zenu_autograd::{
creator::from_vec::from_vec,
functions::{activation::sigmoid::sigmoid, loss::cross_entropy::cross_entropy},
Variable,
};
use zenu_layer::{layers::linear::Linear, Layer};
use zenu_matrix::{
matrix::{IndexItem, ToViewMatrix},
operation::max::MaxIdx,
};
use zenu_optimizer::sgd::SGD;
struct SingleLayerModel {
linear: Linear<f32>,
}
impl SingleLayerModel {
fn new() -> Self {
let mut linear = Linear::new(784, 10);
linear.init_parameters(None);
Self { linear }
}
}
impl Model<f32> for SingleLayerModel {
fn predict(&self, inputs: &[Variable<f32>]) -> Variable<f32> {
let x = &inputs[0];
let x = self.linear.call(x.clone());
sigmoid(x)
}
}
struct MnistDataset {
data: Vec<(Vec<u8>, u8)>,
}
impl Dataset<f32> for MnistDataset {
type Item = (Vec<u8>, u8);
fn item(&self, item: usize) -> Vec<Variable<f32>> {
let (x, y) = &self.data[item];
let x_f32 = x.iter().map(|&x| x as f32).collect::<Vec<_>>();
let x = from_vec(x_f32, [784]);
let y_onehot = (0..10)
.map(|i| if i == *y as usize { 1.0 } else { 0.0 })
.collect::<Vec<_>>();
let y = from_vec(y_onehot, [10]);
vec![x, y]
}
fn len(&self) -> usize {
self.data.len()
}
fn all_data(&mut self) -> &mut [Self::Item] {
&mut self.data as &mut [Self::Item]
}
}
fn main() {
let (train, test) = minist_dataset().unwrap();
let (train, val) = train_val_split(&train, 0.8, true);
let test_dataloader = DataLoader::new(MnistDataset { data: test }, 1);
let sgd = SGD::new(0.01);
let model = SingleLayerModel::new();
for epoch in 0..10 {
let mut train_dataloader = DataLoader::new(
MnistDataset {
data: train.clone(),
},
16,
);
let val_dataloader = DataLoader::new(MnistDataset { data: val.clone() }, 16);
train_dataloader.shuffle();
let mut epoch_loss_train: f32 = 0.;
let mut num_iter_train = 0;
for batch in train_dataloader {
let input = batch[0].clone();
let target = batch[1].clone();
let y_pred = model.predict(&[input]);
let loss = cross_entropy(y_pred, target);
update_parameters(loss.clone(), &sgd);
epoch_loss_train += loss.get_data().index_item([]);
num_iter_train += 1;
}
let mut epoch_loss_val = 0.;
let mut num_iter_val = 0;
for batch in val_dataloader {
let input = batch[0].clone();
let target = batch[1].clone();
let y_pred = model.predict(&[input]);
let loss = cross_entropy(y_pred, target);
epoch_loss_val += loss.get_data().index_item([]);
num_iter_val += 1;
}
println!(
"Epoch: {}, Train Loss: {}, Val Loss: {}",
epoch,
epoch_loss_train / num_iter_train as f32,
epoch_loss_val / num_iter_val as f32
);
}
let mut test_loss = 0.;
let mut num_iter_test = 0;
let mut correct = 0;
let mut total = 0;
for batch in test_dataloader {
let input = batch[0].clone();
let target = batch[1].clone();
let y_pred = model.predict(&[input]);
let loss = cross_entropy(y_pred.clone(), target.clone());
test_loss += loss.get_data().index_item([]);
num_iter_test += 1;
let y_pred = y_pred.get_data();
let max_idx = y_pred.to_view().max_idx()[0];
let target = target.get_data();
let target = target.to_view().max_idx()[0];
if max_idx == target {
correct += 1;
}
total += 1;
}
println!("Accuracy: {}", correct as f32 / total as f32);
println!("Test Loss: {}", test_loss / num_iter_test as f32);
}
Contributions to ZeNu are welcome! If you find any issues or have suggestions for improvements, please open an issue or submit a pull request on the GitHub repository.
ZeNu is licensed under the MIT License.
Please keep in mind that ZeNu is currently in the early stages of development, and the API may change as the project evolves.