/pgvector-python

pgvector support for Python

Primary LanguagePythonMIT LicenseMIT

pgvector-python

pgvector support for Python

Supports Django, SQLAlchemy, SQLModel, Psycopg 3, Psycopg 2, and asyncpg

Build Status

Installation

Run:

pip install pgvector

And follow the instructions for your database library:

Or check out some examples:

Django

Create the extension

from pgvector.django import VectorExtension

class Migration(migrations.Migration):
    operations = [
        VectorExtension()
    ]

Add a vector field

from pgvector.django import VectorField

class Item(models.Model):
    embedding = VectorField(dimensions=3)

Insert a vector

item = Item(embedding=[1, 2, 3])
item.save()

Get the nearest neighbors to a vector

from pgvector.django import L2Distance

Item.objects.order_by(L2Distance('embedding', [3, 1, 2]))[:5]

Also supports MaxInnerProduct and CosineDistance

Get the distance

Item.objects.annotate(distance=L2Distance('embedding', [3, 1, 2]))

Get items within a certain distance

Item.objects.alias(distance=L2Distance('embedding', [3, 1, 2])).filter(distance__lt=5)

Add an approximate index

from pgvector.django import IvfflatIndex

class Item(models.Model):
    class Meta:
        indexes = [
            IvfflatIndex(
                name='my_index',
                fields=['embedding'],
                lists=100,
                opclasses=['vector_l2_ops']
            )
        ]

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

SQLAlchemy

Add a vector column

from pgvector.sqlalchemy import Vector

class Item(Base):
    embedding = mapped_column(Vector(3))

Insert a vector

item = Item(embedding=[1, 2, 3])
session.add(item)
session.commit()

Get the nearest neighbors to a vector

session.scalars(select(Item).order_by(Item.embedding.l2_distance([3, 1, 2])).limit(5))

Also supports max_inner_product and cosine_distance

Get the distance

session.scalars(select(Item.embedding.l2_distance([3, 1, 2])))

Get items within a certain distance

session.scalars(select(Item).filter(Item.embedding.l2_distance([3, 1, 2]) < 5))

Add an approximate index

index = Index('my_index', Item.embedding,
    postgresql_using='ivfflat',
    postgresql_with={'lists': 100},
    postgresql_ops={'embedding': 'vector_l2_ops'}
)
index.create(engine)

Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance

SQLModel

Add a vector column

from pgvector.sqlalchemy import Vector
from sqlalchemy import Column

class Item(SQLModel, table=True):
    embedding: List[float] = Field(sa_column=Column(Vector(3)))

Insert a vector

item = Item(embedding=[1, 2, 3])
session.add(item)
session.commit()

Get the nearest neighbors to a vector

session.exec(select(Item).order_by(Item.embedding.l2_distance([3, 1, 2])).limit(5))

Also supports max_inner_product and cosine_distance

Psycopg 3

Register the vector type with your connection

from pgvector.psycopg import register_vector

register_vector(conn)

For async connections, use

from pgvector.psycopg import register_vector_async

await register_vector_async(conn)

Insert a vector

embedding = np.array([1, 2, 3])
conn.execute('INSERT INTO item (embedding) VALUES (%s)', (embedding,))

Get the nearest neighbors to a vector

conn.execute('SELECT * FROM item ORDER BY embedding <-> %s LIMIT 5', (embedding,)).fetchall()

Psycopg 2

Register the vector type with your connection or cursor

from pgvector.psycopg2 import register_vector

register_vector(conn)

Insert a vector

embedding = np.array([1, 2, 3])
cur.execute('INSERT INTO item (embedding) VALUES (%s)', (embedding,))

Get the nearest neighbors to a vector

cur.execute('SELECT * FROM item ORDER BY embedding <-> %s LIMIT 5', (embedding,))
cur.fetchall()

asyncpg

Register the vector type with your connection

from pgvector.asyncpg import register_vector

await register_vector(conn)

or your pool

async def init(conn):
    await register_vector(conn)

pool = await asyncpg.create_pool(..., init=init)

Insert a vector

embedding = np.array([1, 2, 3])
await conn.execute('INSERT INTO item (embedding) VALUES ($1)', embedding)

Get the nearest neighbors to a vector

await conn.fetch('SELECT * FROM item ORDER BY embedding <-> $1 LIMIT 5', embedding)

History

View the changelog

Contributing

Everyone is encouraged to help improve this project. Here are a few ways you can help:

To get started with development:

git clone https://github.com/pgvector/pgvector-python.git
cd pgvector-python
pip install -r requirements.txt
createdb pgvector_python_test
pytest