Contributions to this project:
- Make it overall easier to understand, running the scripts and test or train the models
- Build .pb files for TensorFlow Android usage
- Create inference module, easier to understand during implementation for Android in Java (under-work)
A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K.
- Download YOLOv3 weights from YOLO website.
- Convert the Darknet YOLO model to a Keras model.
- Run YOLO detection.
wget https://pjreddie.com/media/files/yolov3.weights
python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5
python yolo_detection.py [OPTIONS...] --input [image_path] --image, for image detection mode, OR
python yolo_detection.py [OPTIONS...] --input [video_path] [output_path (optional)]
as your video will be stored at the same location as of original with name video_path_labeled_video
For Tiny YOLOv3, just do in a similar way, just specify model path and anchor path with --model model_file
and --anchors anchor_file
.
Use --help to see usage of yolo_detection.py:
usage: yolo_detection.py [-h] [--model_path MODEL_PATH]
[--anchors_path ANCHORS_PATH]
[--classes_path CLASSES_PATH] [--gpu_num GPU_NUM]
[--print_summary PRINT_SUMMARY] [--save_pb SAVE_PB]
[--image] [--input [INPUT]] [--output [OUTPUT]]
optional arguments:
-h, --help show this help message and exit
--model_path MODEL_PATH
path to model weight file, default weights/yolo.h5
--anchors_path ANCHORS_PATH
path to anchor definitions, default
model_data/yolo_anchors.txt
--classes_path CLASSES_PATH
path to class definitions, default
model_data/coco_classes.txt
--gpu_num GPU_NUM Number of GPUs to use, default 1
--print_summary PRINT_SUMMARY
Print summary of the models, default False
--save_pb SAVE_PB Save the tf model in pb format, default False
--image Image detection mode.
--input [INPUT] Video or Image (if with --image) input path
--output [OUTPUT] [Optional] Video output path (currently output frames
are being stored in test_data directory)
- MultiGPU usage: use
--gpu_num N
to use N GPUs. It is passed to the Keras multi_gpu_model().
-
Generate your own annotation file and class names file.
One row for one image;
Row format:image_file_path box1 box2 ... boxN
;
Box format:x_min,y_min,x_max,y_max,class_id
(no space).
For VOC dataset, trypython voc_annotation.py
Here is an example:path/to/img1.jpg 50,100,150,200,0 30,50,200,120,3 path/to/img2.jpg 120,300,250,600,2 ...
-
Make sure you have run
python convert.py -w yolov3.cfg yolov3.weights model_data/yolo_weights.h5
The file model_data/yolo_weights.h5 is used to load pretrained weights. -
Modify train.py and start training.
python train.py
Use your trained weights or checkpoint weights with command line option--model model_file
when using yolo_detection.py Remember to modify class path or anchor path, with--classes class_file
and--anchors anchor_file
.
If you want to use original pretrained weights for YOLOv3:
1. wget https://pjreddie.com/media/files/darknet53.conv.74
2. rename it as darknet53.weights
3. python convert.py -w darknet53.cfg darknet53.weights model_data/darknet53_weights.h5
4. use model_data/darknet53_weights.h5 in train.py
-
The test environment is
- Python 3.5.2
- Keras 2.1.5
- tensorflow 1.6.0
-
Default anchors are used. If you use your own anchors, probably some changes are needed.
-
The inference result is not totally the same as Darknet but the difference is small.
-
The speed is slower than Darknet. Replacing PIL with opencv may help a little.
-
Always load pretrained weights and freeze layers in the first stage of training. Or try Darknet training. It's OK if there is a mismatch warning.
-
The training strategy is for reference only. Adjust it according to your dataset and your goal. And add further strategy if needed.
-
For speeding up the training process with frozen layers train_bottleneck.py can be used. It will compute the bottleneck features of the frozen model first and then only trains the last layers. This makes training on CPU possible in a reasonable time. See this for more information on bottleneck features.