/FlagEval

FlagEval is an evaluation toolkit for AI large foundation models.

Primary LanguagePythonApache License 2.0Apache-2.0

FlagEval 简体中文


Overview

FlagEval is an evaluation toolkit for AI large foundation models. Our goal is to explore and integrate scientific, fair and open foundation model evaluation benchmarks, methods and tools. FlagEval will support multi-dimensional evaluation (such as accuracy, efficiency, robustness, etc.) of foundation models in/cross different modalities (such as NLP, audio, CV and multimodal) in the future. We hope that through the evaluation of the foundation models, we can deepen the understanding of the foundation models and promote related technological innovation and industrial application.

  • A evaluation toolkit mCLIPEval for vision-language models (such as CLIP, Contrastive Language–Image Pre-training).
    • Multilingual (12 languages) datasets and monolingual (English/Chinese) datasets.
    • Support for zeroshot classification, zeroshot retrieval and zeroshot composition tasks.
    • Adapted to FlagAI pretrained models (AltCLIP, EVA-CLIP), OpenCLIP pretrained models, Chinese CLIP models, Multilingual CLIP models, Taiyi Series pretrained models, or customized models.
    • Data preparation from various resources, like torchvision, huggingface, kaggle, etc.
    • Visualization of evaluation results through leaderboard figures or tables, and detailed comparsions between two specific models.

Environment Preparation

  • Pytorch version >= 1.8.0
  • Python version >= 3.8
  • For evaluating models on GPUs, you'll also need install CUDA and NCCL

How to use mCLIPEval

git clone https://github.com/FlagOpen/FlagEval.git
cd FlagEval/mCLIPEval/
pip install -r requirements.txt

Please refer to mCLIPEval/README.md for more details.

Contact us

  • For help and issues associated with FlagEval, or reporting a bug, please open a GitHub Issue or e-mail to flageval@baai.ac.cn. Let's build a better & stronger FlagEval together :)
  • We're hiring! If you are interested in working with us on foundation model evaluation, please contact flageval@baai.ac.cn.
  • Welcome to collaborate with FlagEval! New task or new dataset submissions are encouraged. If you are interested in contributiong new task or new dataset or new tool to FlagEval, please contact flageval@baai.ac.cn.

The majority of FlagEval is licensed under the Apache 2.0 license, however portions of the project are available under separate license terms:

Misc

↳ Stargazers, thank you for your support!

Stargazers repo roster for @FlagOpen/FlagEval

↳ Forkers, thank you for your support!

Forkers repo roster for @FlagOpen/FlagEval

If you find our work helpful, please consider to star🌟 this repo. Thanks for your support!