/GPTQ-for-LLaMa

4 bits quantization of LLaMA using GPTQ

Primary LanguagePython

GPTQ-for-LLaMA

4 bits quantization of LLaMA using GPTQ

GPTQ is SOTA one-shot weight quantization method

This code is based on GPTQ

New Features

Changed to support new features proposed by GPTQ.

  • Slightly adjusted preprocessing of C4 and PTB for more realistic evaluations (used in our updated results); can be activated via the flag --new-eval.
  • two new tricks:--act-order (quantizing columns in order of decreasing activation size) and --true-sequential (performing sequential quantization even within a single Transformer block). Those fix GPTQ's strangely bad performance on the 7B model (from 7.15 to 6.09 Wiki2 PPL) and lead to slight improvements on most models/settings in general.
  • Changed to use an optimized kernel that uses triton.
  • Changed the code to support backward.

Due to Triton's limitations, 3-bit is not supported. If you are using 3bit, please use cuda branch.

Triton only supports Linux, so if you are a Windows user, please use WSL2.

Result

LLaMA-7B(click me)
LLaMA-7B Bits group-size memory(MiB) Wikitext2 checkpoint size(GB)
FP16 16 - 13940 5.68 12.5
RTN 4 - - 6.29 -
GPTQ 4 - 4740 6.09 3.5
GPTQ 4 128 4891 5.85 3.6
RTN 3 - - 25.54 -
GPTQ 3 - 3852 8.07 2.7
GPTQ 3 128 4116 6.61 3.0
LLaMA-13B
LLaMA-13B Bits group-size memory(MiB) Wikitext2 checkpoint size(GB)
FP16 16 - OOM 5.09 24.2
RTN 4 - - 5.53 -
GPTQ 4 - 8410 5.36 6.5
GPTQ 4 128 8747 5.20 6.7
RTN 3 - - 11.40 -
GPTQ 3 - 6870 6.63 5.1
GPTQ 3 128 7277 5.62 5.4
LLaMA-33B
LLaMA-33B Bits group-size memory(MiB) Wikitext2 checkpoint size(GB)
FP16 16 - OOM 4.10 60.5
RTN 4 - - 4.54 -
GPTQ 4 - 19493 4.45 15.7
GPTQ 4 128 20570 4.23 16.3
RTN 3 - - 14.89 -
GPTQ 3 - 15493 5.69 12.0
GPTQ 3 128 16566 4.80 13.0
LLaMA-65B
LLaMA-65B Bits group-size memory(MiB) Wikitext2 checkpoint size(GB)
FP16 16 - OOM 3.53 121.0
RTN 4 - - 3.92 -
GPTQ 4 - OOM 3.84 31.1
GPTQ 4 128 OOM 3.65 32.3
RTN 3 - - 10.59 -
GPTQ 3 - OOM 5.04 23.6
GPTQ 3 128 OOM 4.17 25.6

Quantization requires a large amount of CPU memory. However, the memory required can be reduced by using swap memory.

Depending on the GPUs/drivers, there may be a difference in performance, which decreases as the model size increases.(IST-DASLab/gptq#1)

According to GPTQ paper, As the size of the model increases, the difference in performance between FP16 and GPTQ decreases.

Installation

If you don't have conda, install it first.

conda create --name gptq python=3.9 -y
conda activate gptq
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
# Or, if you're having trouble with conda, use pip with python3.9:
# pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117

git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa
cd GPTQ-for-LLaMa
pip install -r requirements.txt

Dependencies

  • torch: tested on v2.0.0+cu117
  • transformers: tested on v4.28.0.dev0
  • datasets: tested on v2.10.1
  • safetensors: tested on v0.3.0

All experiments were run on a single NVIDIA RTX3090.

Language Generation

LLaMA

#convert LLaMA to hf
python convert_llama_weights_to_hf.py --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir ./llama-hf

# Benchmark language generation with 4-bit LLaMA-7B:

# Save compressed model
CUDA_VISIBLE_DEVICES=0 python llama.py ./llama-hf/llama-7b c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save llama7b-4bit-128g.pt
# Or save compressed `.safetensors` model
CUDA_VISIBLE_DEVICES=0 python llama.py ./llama-hf/llama-7b c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors llama7b-4bit-128g.safetensors

# Benchmark generating a 2048 token sequence with the saved model
CUDA_VISIBLE_DEVICES=0 python llama.py ./llama-hf/llama-7b c4 --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --benchmark 2048 --check
# Benchmark FP16 baseline, note that the model will be split across all listed GPUs
CUDA_VISIBLE_DEVICES=0,1,2,3,4 python llama.py ./llama-hf/llama-7b c4 --benchmark 2048 --check

# model inference with the saved model
CUDA_VISIBLE_DEVICES=0 python llama_inference.py ./llama-hf/llama-7b --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --text "this is llama"
# model inference with the saved model using safetensors loaded direct to gpu
CUDA_VISIBLE_DEVICES=0 python llama_inference.py ./llama-hf/llama-7b --wbits 4 --groupsize 128 --load llama7b-4bit-128g.safetensors --text "this is llama" --device=0
# model inference with the saved model with offload(This is very slow. This is a simple implementation and could be improved with technologies like flexgen(https://github.com/FMInference/FlexGen).
CUDA_VISIBLE_DEVICES=0 python llama_inference_offload.py ./llama-hf/llama-7b --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --text "this is llama" --pre_layer 16
It takes about 180 seconds to generate 45 tokens(5->50 tokens) on single RTX3090 based on LLaMa-65B. pre_layer is set to 50.

Basically, 4-bit quantization and 128 groupsize are recommended.

Acknowledgements

This code is based on GPTQ

Thanks to Meta AI for releasing LLaMA, a powerful LLM.

Triton GPTQ kernel code is based on GPTQ-triton