Zhengxue Wang1†, Zhiqiang Yan1†‡ , Ming-Hsuan Yang2, Jinshan Pan1, Jian Yang1‡, Ying Tai3, Guangwei Gao4
†equal contribution
‡corresponding author
1Nanjing University of Science and Technology
2University of California at Merced
3Nanjing University
4Nanjing University of Posts and Telecommunications
[Paper] [Project Page]
SPFNet. It first produces the normal
Scheme of (a) All-in-one Prior Propagation (APP), and (b) histogram comparison of scene prior features before and after APP.
Scheme of (a) One-to-one Prior Embedding (OPE), and (b) gradient histogram of filter kernels in the texture area (green box).
Python==3.11.5
PyTorch==2.1.0
numpy==1.23.5
torchvision==0.16.0
scipy==1.11.3
Pillow==10.0.1
tqdm==4.65.0
scikit-image==0.21.0
All Datasets can be found here.
All pretrained models can be found here.
Train on synthetic NYU-v2
# x4 DSR
> python train.py --scale 4 --num_feats 42
# x8 DSR
> python train.py --scale 8 --num_feats 42
# x16 DSR
> python train.py --scale 16 --num_feats 42
Train on real-world RGB-D-D
> python train.py --scale 4 --num_feats 20
Train on synthetic NYU-v2
# x4 DSR
> python train.py --scale 4 --num_feats 6 --tiny_model
# x8 DSR
> python train.py --scale 8 --num_feats 6 --tiny_model
# x16 DSR
> python train.py --scale 16 --num_feats 6 --tiny_model
Train on real-world RGB-D-D
> python train.py --scale 4 --num_feats 6 --tiny_model
## Test on synthetic datasets
### x4 DSR
> python test.py --scale 4 --num_feats 42
### x8 DSR
> python test.py --scale 8 --num_feats 42
### x16 DSR
> python test.py --scale 16 --num_feats 42
## Test on real-world RGB-D-D
> python test.py --scale 4 --num_feats 20 --downsample real
## Test on synthetic datasets
### x4 DSR
> python test.py --scale 4 --num_feats 6 --tiny_model
### x8 DSR
> python test.py --scale 8 --num_feats 6 --tiny_model
### x16 DSR
> python test.py --scale 16 --num_feats 6 --tiny_model
## Test on real-world RGB-D-D
> python test.py --scale 4 --num_feats 6 --downsample real --tiny_model
Train & test on real-world RGB-D-D:
Train & test on synthetic NYU-v2 (x16):
We thank Xinni Jiang for her invaluable assistance.
We thank these repos sharing their codes: DKN and SUFT.
@article{wang2024scene,
title={Scene Prior Filtering for Depth Map Super-Resolution},
author={Wang, Zhengxue and Yan, Zhiqiang and Yang, Ming-Hsuan and Pan, Jinshan and Yang, Jian and Tai, Ying and Gao, Guangwei},
journal={arXiv preprint arXiv:2402.13876},
year={2024}
}