/SPFNet

Scene Prior Filtering for Depth Map Super-Resolution

Primary LanguagePythonApache License 2.0Apache-2.0

Scene Prior Filtering for Depth Map Super-Resolution

Zhengxue Wang1†, Zhiqiang Yan1†‡ , Ming-Hsuan Yang2, Jinshan Pan1, Jian Yang1‡, Ying Tai3, Guangwei Gao4

equal contribution    corresponding author   
1Nanjing University of Science and Technology    2University of California at Merced   
3Nanjing University    4Nanjing University of Posts and Telecommunications   

[Paper] [Project Page]

model

SPFNet. It first produces the normal $\boldsymbol I_{n}$ and semantic $\boldsymbol I_{s}$ priors from $\boldsymbol I_{r}$ using large-scale models. Then, the scene prior branch (orange part) extracts the multi-modal features. Meanwhile, the depth branch (blue part) recursively conducts all-in-one prior propagation (APP) and one-to-one prior embedding (OPE). BI: bicubic interpolation.

model

Scheme of (a) All-in-one Prior Propagation (APP), and (b) histogram comparison of scene prior features before and after APP.

model

Scheme of (a) One-to-one Prior Embedding (OPE), and (b) gradient histogram of filter kernels in the texture area (green box).

Dependencies

Python==3.11.5
PyTorch==2.1.0
numpy==1.23.5 
torchvision==0.16.0
scipy==1.11.3
Pillow==10.0.1
tqdm==4.65.0
scikit-image==0.21.0

Datasets

All Datasets can be found here.

Models

All pretrained models can be found here.

Training

SPFNet

Train on synthetic NYU-v2
# x4 DSR
> python train.py --scale 4 --num_feats 42
# x8 DSR
> python train.py --scale 8 --num_feats 42
# x16 DSR
> python train.py --scale 16 --num_feats 42
Train on real-world RGB-D-D
> python train.py --scale 4 --num_feats 20 

SPFNet-T

Train on synthetic NYU-v2
# x4 DSR
> python train.py --scale 4 --num_feats 6 --tiny_model
# x8 DSR
> python train.py --scale 8 --num_feats 6 --tiny_model
# x16 DSR
> python train.py --scale 16 --num_feats 6 --tiny_model
Train on real-world RGB-D-D
> python train.py --scale 4 --num_feats 6 --tiny_model

Testing

SPFNet

## Test on synthetic datasets
### x4 DSR
> python test.py --scale 4 --num_feats 42
### x8 DSR
> python test.py --scale 8 --num_feats 42
### x16 DSR
> python test.py --scale 16 --num_feats 42
## Test on real-world RGB-D-D
> python test.py --scale 4 --num_feats 20 --downsample real

SPFNet-T

## Test on synthetic datasets
### x4 DSR
> python test.py --scale 4 --num_feats 6 --tiny_model
### x8 DSR
> python test.py --scale 8 --num_feats 6 --tiny_model
### x16 DSR
> python test.py --scale 16 --num_feats 6 --tiny_model
## Test on real-world RGB-D-D
> python test.py --scale 4 --num_feats 6 --downsample real --tiny_model

Experiments

Quantitative comparison

Visual comparison

Train & test on real-world RGB-D-D:

Train & test on synthetic NYU-v2 (x16):

Acknowledgements

We thank Xinni Jiang for her invaluable assistance.

We thank these repos sharing their codes: DKN and SUFT.

Citation

@article{wang2024scene,
  title={Scene Prior Filtering for Depth Map Super-Resolution},
  author={Wang, Zhengxue and Yan, Zhiqiang and Yang, Ming-Hsuan and Pan, Jinshan and Yang, Jian and Tai, Ying and Gao, Guangwei},
  journal={arXiv preprint arXiv:2402.13876},
  year={2024}
}