this project is to predict xc potential from electron density.
python3 create_dataset_torch.py --output dataset
param | description |
---|---|
dataset | path to directory containing npy files |
torchrun --nproc_per_node <data/parallelism/number> --nnodes 1 --node_rank 0 --master_addr localhost --master_port <port num> train_torch.py --trainset <path/to/trainset/csv> --evalset <path/to/evalset/csv> [--ckpt <path/to/checkpoint>] [--batch_size <batch size>] [--lr <learning rate>] [--workers <number of workers>] [--device (cpu|cuda)]
param | description |
---|---|
dataset | path to directory containing npz files |
ckpt | path to directory to hold checkpoints, default path is ./ckpt |
batch_size | batch size |
lr | the initial learning rate |
workers | number of workers for data loader |
device | cpu or cuda |
python3 eval.py --evalset <path/to/evalset/list> --ckpt <path/to/checkpoint>
generate dataset with coordinates
python3 tools/generate_evalset.py --eval_dist <bond distance> [--output evalset.npy]
plot prediction of Exc and Vxc on x-axis
PYTHONPATH=. python3 tools/visualize.py --input <path/to/evalset.npy> --ckpt <path/to/checkpoint>