Tokenized Graph Transformer - Official PyTorch Implementation
Pure Transformers are Powerful Graph Learners
Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, Seunghoon Hong
arXiv Preprint
Setting up experiments
Using the provided Docker image (recommended)
docker pull jw9730/tokengt:latest
docker run -it --gpus=all --ipc=host --name=tokengt -v /home:/home jw9730/tokengt:latest bash
# upon completion, you should be at /tokengt inside the container
Using the provided Dockerfile
git clone --recursive https://github.com/jw9730/tokengt.git /tokengt
cd tokengt
docker build --no-cache --tag tokengt:latest .
docker run -it --gpus all --ipc=host --name=tokengt -v /home:/home tokengt:latest bash
# upon completion, you should be at /tokengt inside the container
Using pip
sudo apt-get update
sudo apt-get install python3.9
git clone --recursive https://github.com/jw9730/tokengt.git tokengt
cd tokengt
bash install.sh
Running experiments
PCQM4Mv2 large-scale graph regression
cd large-scale-regression/scripts
# TokenGT (ORF)
bash pcqv2-orf.sh
# TokenGT (Lap)
bash pcqv2-lap.sh
# TokenGT (Lap) + Performer
bash pcqv2-lap-performer-finetune.sh
# TokenGT (ablated)
bash pcqv2-ablated.sh
# Attention distance plot for TokenGT (ORF)
bash visualize-pcqv2-orf.sh
# Attention distance plot for TokenGT (Lap)
bash visualize-pcqv2-lap.sh
Pre-Trained Models
We provide checkpoints of TokenGT (ORF)
and TokenGT (Lap)
, both trained with PCQM4Mv2.
Please download ckpts.zip
from this link.
Then, unzip ckpts
and place it in the large-scale-regression/scripts
directory, so that each trained checkpoint is located at large-scale-regression/scripts/ckpts/pcqv2-tokengt-[NODE_IDENTIFIER]-trained/checkpoint_best.pt
.
After that, you can resume the training from these checkpoints by adding the option --pretrained-model-name pcqv2-tokengt-[NODE_IDENTIFIER]-trained
to the training scripts.
References
Our implementation uses code from the following repositories:
- Performer for FAVOR+ attention kernel
- Graph Transformer, SignNet, and SAN for Laplacian eigenvectors
- Graphormer for PCQM4Mv2 experiment pipeline
- timm for stochastic depth regularization
Citation
If you find our work useful, please consider citing it:
@article{kim2021transformers,
author = {Jinwoo Kim and Tien Dat Nguyen and Seonwoo Min and Sungjun Cho and Moontae Lee and Honglak Lee and Seunghoon Hong},
title = {Pure Transformers are Powerful Graph Learners},
journal = {arXiv},
volume = {abs/2207.02505},
year = {2022},
url = {https://arxiv.org/abs/2207.02505}
}