整理常用的一些代码模板
void quick_sort (vector<int> &nums, int low, int high) {
if (low < high) {
int l = low, r = high;
int pivot = nums[l];
while (l < r) {
while (l < r && nums[r] >= pivot) {
r--;
}
nums[l] = nums[r];
while (l < r && nums[l] < pivot) {
l++;
}
nums[r] = nums[l];
}
nums[l] = pivot;
quick_sort(nums, low, l-1);
quick_sort(nums, l+1, high);
}
}
void merge(vector<int> &nums, int low, int high) {
int temp[N];
int mid = low + (high - low) / 2;
int i = 0, l = low, r = mid + 1;
while (l <= mid && r <= high) {
if (nums[l] < nums[r]) {
temp[i++] = nums[l++];
} else {
temp[i++] = nums[r++];
}
}
while (l <= mid) {
temp[i++] = nums[l++];
}
while (r <= high) {
temp[i++] = nums[r++];
}
i = 0;
while (low <= high) {
nums[low++] = temp[i++];
}
}
bool check(int x) {/* ... */} // 检查x是否满足某种性质
// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid; // check()判断mid是否满足性质
else l = mid + 1;
}
return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
while (l < r)
{
int mid = l + r + 1 >> 1; // +1 是因为 如果l = r - 1 ,mid 还会为l,就会死循环
if (check(mid)) l = mid;
else r = mid - 1;
}
return l;
}
x的平方根
int mySqrt(int x) {
if (x==0) return 0;
long l = 0;
long r = x;
while (l < r) {
long mid = l + r + 1>> 1;
if (x / mid >= mid) {
l = mid;
} else {
r = mid - 1;
}
}
return l;
}
// 数的范围
#include <bits/stdc++.h>
using namespace std;
const int N = 100010;
int main() {
int n, q;
cin >> n >> q;
vector<int> nums(n);
for (int i = 0; i < n; i++) {
cin >> nums[i];
}
while (q--) {
int target;
cin >> target;
int l = 0;
int r = n - 1;
while (l < r) {
int mid = l + r >> 1;
if (nums[mid] >= target) {
r = mid;
} else {
l = mid + 1;
}
}
if (nums[l] != target) {
cout << -1 << " " << -1 <<endl;
continue;
}
cout << l << " ";
l = 0;
r = n - 1;
while (l < r) {
int mid = l + r + 1 >> 1;
if (nums[mid] <= target) {
l = mid;
} else {
r = mid - 1;
}
}
cout << l << endl;
}
return 0;
}
bool check(double x) {/* ... */} // 检查x是否满足某种性质
double bsearch_3(double l, double r)
{
const double eps = 1e-6; // eps 表示精度,取决于题目对精度的要求
while (r - l > eps)
{
double mid = (l + r) / 2;
if (check(mid)) r = mid;
else l = mid;
}
return l;
}
vector<int> add(vector<int> &A, vector<int> &B) {
vector<int> C;
int t = 0;
for (int i = 0; i < A.size() || i < B.size(); i++) {
if (i < A.size()) t+=A[i];
if (i < B.size()) t+=B[i];
C.push_back(t%10);
t/=10;
}
if (t > 0) C.push_back(t);
return C;
}
// (A >= B)
bool cmp (vector<int> &A, vector<int> &B) {
if (A.size() != B.size()) return A.size() > B.size();
for (int i = 0; i < A.size(); i++) {
if (A[i] != B[i]) {
return A[i] > B[i];
}
}
return true;
}
vector<int> sub(vector<int> &A, vector<int> &B) {
vector<int> C;
int t = 0;
for (int i = 0; i < A.size(); i++) {
t = A[i] - t;
if (i < B.size()) t-=B[i];
C.push_back((t+10)%10);
if (t < 0) t = 1;
else t = 0;
}
// 去掉前导 0 (003 输出3)
while (C.size() > 1 && C.back() == 0){
C.pop_back();
}
return C;
}
vector<int> mul(vector<int> &A, int b) {
vector<int> C;
int t = 0;
for (int i = 0; i < A.size(); i++) {
t += A[i] * b;
C.push_back(t % 10);
t /= 10;
}
if (t > 0) C.push_back(t);
while (C.size() > 1 && C.back() == 0) {
C.pop_back();
}
return C;
}
vector<int> div(vector<int> &A, int b, int &r) {
vector<int> C; // 商
r = 0; // 余数
for (int i = A.size() - 1; i >= 0; i--) {
r = r * 10 + A[i];
C.push_back(r /b);
r %= b;
}
// 注意翻转
reverse(C.begin(), C.end());
// 去掉前导0
while (C.size() > 1 && C.back() == 0) {
C.pop_back();
}
return C;
}
S[i] = a[1] + a[2] + ... a[i]
a[l] + ... + a[r] = S[r] - S[l - 1]
/*
S[i, j] = 第i行j列格子左上部分所有元素的和
以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:
S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]
*/
#include <bits/stdc++.h>
using namespace std;
const int N = 1010; // 注意不能选取1e5 + 10,会爆栈
int a[N][N];
int s[N][N];
int main ()
{
ios::sync_with_stdio(false);
int n, m, q;
cin >> n >> m >> q;
for (int i = 1; i <= n; i++){
for (int j = 1; j <= m; j++){
cin >> a[i][j];
}
}
for (int i = 1; i <= n; i++){
for (int j = 1; j <= m; j++){
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + a[i][j];
}
}
while (q--) {
int x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
cout << s[x2][y2] - s[x2][y1-1] -s[x1-1][y2] + s[x1-1][y1-1] << endl;
}
return 0;
}
首先构造B[i] = A[i] - A[i-1],这样A[i]是B的前缀和
给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c
给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:
S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c
求n的第k位数字: n >> k & 1
返回n的最后一位1:lowbit(n) = n & -n
// 滑动窗口
for (int i = 0, j = 0; i < n; i ++ )
{
while (j < i && check(i, j)) j ++ ;
// 具体问题的逻辑
}
常见问题分类:
(1) 对于一个序列,用两个指针维护一段区间
(2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作
// 离散化的本质,是映射,将间隔很大的点,映射到相邻的数组元素中。减少对空间的需求,也减少计算量
vector<int> alls; // 存储所有待离散化的值
sort(alls.begin(), alls.end()); // 将所有值排序
alls.erase(unique(alls.begin(), alls.end()), alls.end()); // 去掉重复元素
// 二分求出x对应的离散化的值
int find(int x) // 找到第一个大于等于x的位置
{
int l = 0, r = alls.size() - 1;
while (l < r)
{
int mid = l + r >> 1;
if (alls[mid] >= x) r = mid;
else l = mid + 1;
}
return r + 1; // 映射到1, 2, ...n
}
// 将所有存在交集的区间合并
void merge(vector<PII> &segs)
{
vector<PII> res;
sort(segs.begin(), segs.end());
int st = -2e9, ed = -2e9;
for (auto seg : segs)
if (ed < seg.first)
{
if (st != -2e9) res.push_back({st, ed});
st = seg.first, ed = seg.second;
}
else ed = max(ed, seg.second);
if (st != -2e9) res.push_back({st, ed});
segs = res;
}