/dicomConversionToNifti

Python code that automatically takes DICOM studies, converts, deidentifies, and renames for easy annotation

Primary LanguagePythonBSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

dicomConversionToNiftiHCC

This python script facilitates standardized conversion of DICOM studies into nifti format by doing the following:

  • Near autonomous conversion of DICOM images to medical image processing-friendly nifti format
  • Deidentification
  • Assignment of a standardized naming convention relevant to a given annotation routine, for example, labling liver lesions on T1 and ADC sequences before and after treatment (easily customized for other uses)

Currently can be used for conversion of pre- and post-treatment MRI abdomen studies AND CT angiography studies by using the appropriate config file

Dependencies

SimpleITK
Numpy
PyDicom
NiPype
Slugify

Usage

Script assumes a nested folder eg tree study-->series-->DICOM (standard when exportingw with Osirix or Horos). This should easily by adapted for other folder structures if working with exported images from other DICOM viewers/PACS servers.

There are two script calls needed:.

  1. Grab Metadata: create a .csv with relevant metadata in table for tagging of desired series by domain expert (or algorithm in future)

  2. Convert From Table: conversion, deidentification and standardized naming of converted sequences using the annotated tag column from 1) Metadata table.

Grab Metadata into Table

python osirix_dicom_to_nifti.py --grabMetadata --tablePath ./path/to/metadata/table.csv --dicomDir ./path/to/folder/containing/study/folders

This will generate a .csv file with columns of metadata for each series of an MRI study meant to allow inference of which series' are desired for conversion.

Heads up: this can be a lot of rows as modern MRI studies generate a lot of series!

An empty tag column will be generated and with some domain knowledge the user must fill-in with the appropriate tag number.

Example is as follows (take note of the number inputted in the tag column):

MRN ACC Machine Series Path Acq Time Series Number Series Desc Tag(0=pre,1=ea,2=ea_sub,3=la,4=la_sub,5=pv,6=pv_sub,7=ev,8=ev_sub,9=adc)
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/trufisp-loc-1 110028.625 1 Trufisp_Loc
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/cor-haste-2 110142.875 2 COR HASTE
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/3point-dixon-t2-star-031511-fa10-modified-6611-opp-6 110544.7325 6 3-point Dixon_T2 star_03-15-11_FA10_modified 6/6/11_opp
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/3point-dixon-t2-star-031511-fa10-modified-6611-in-5 110544.735 5 3-point Dixon_T2 star_03-15-11_FA10_modified 6/6/11_in
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/ax-vibe-pre-62612-13 110828.9625 13 AX VIBE PRE (6/26/12) 0
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/ax-vibe-post-2art-1min-3min-equ-14 111014.0575 14 AX VIBE POST 2ART,1MIN,3MIN EQU 1
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/ax-vibe-post-2art-1min-3min-equ-sub-15 111014.0575 15 AX VIBE POST 2ART,1MIN,3MIN EQU_SUB 2
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/ax-vibe-post-2art-1min-3min-equ-16 111035.2275 16 AX VIBE POST 2ART,1MIN,3MIN EQU 3
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/ax-vibe-post-2art-1min-3min-equ-sub-17 111035.2275 17 AX VIBE POST 2ART,1MIN,3MIN EQU_SUB 4
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/ax-vibe-post-2art-1min-3min-equ-18 111114.47 18 AX VIBE POST 2ART,1MIN,3MIN EQU 5
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/ax-vibe-post-2art-1min-3min-equ-sub-19 111114.47 19 AX VIBE POST 2ART,1MIN,3MIN EQU_SUB 6
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/ax-vibe-post-2art-1min-3min-equ-500 111131.799 500 AX VIBE POST 2ART,1MIN,3MIN EQU
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/ax-vibe-post-2art-1min-3min-equ-20 111316.04 20 AX VIBE POST 2ART,1MIN,3MIN EQU 7
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/ax-vibe-post-2art-1min-3min-equ-sub-21 111316.04 21 AX VIBE POST 2ART,1MIN,3MIN EQU_SUB 8
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/cor-vibe-post-3-min-22 111407.52 22 000001 Avanto
9999999 000001 Avanto ./Y90_Seg/name/body-mt-sinai-protocols-abdomen/pace-diffusion-50400800-10113-adc-29 112810.835 29 PACE Diffusion 50-400-800 10-1-13_ADC 9
9999999

Convert DICOM to Nifti Using Tagged Metadata Table

Once the table above is properly annotated with the correct tags for the desired series, the second step is conversion.

python osirix_dicom_to_nifti.py --convertFromTable --tablePath ./path/to/metadata/table.csv --dicomDir ./path/to/folder/containing/study/folders --niftiDir ./path/to/nifti/output/folder

Study folders within designated nifti output folder will be named according to accession number for study, so conversion of these folder names to random strings using a secure look-up table is encouraged for thorough de-identification.