- 仓库更新 Top News
- 性能情况 Performance
- 所需环境 Environment
- 文件下载 Download
- 训练步骤 How2train
- 预测步骤 How2predict
- 评估步骤 How2eval
- 参考资料 Reference
2022-12
:仓库创建。
训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mAP 0.5:0.95 | mAP 0.5 |
---|---|---|---|---|---|
COCO-Train2017 | detr_resnet50_weights_coco.pth | COCO-Val2017 | min_length=800 | 42.0 | 62.4 |
COCO-Train2017 | detr_resnet101_weights_coco.pth | COCO-Val2017 | min_length=800 | 43.3 | 63.5 |
torch==1.2.0
训练所需的各类权值均可在百度网盘中下载。
链接: https://pan.baidu.com/s/1p-byxGz4-jcSNo_FArLmQA
提取码: bpvp
VOC数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:
链接: https://pan.baidu.com/s/19Mw2u_df_nBzsC2lg20fQA
提取码: j5ge
-
数据集的准备
本文使用VOC格式进行训练,训练前需要下载好VOC07+12的数据集,解压后放在根目录 -
数据集的处理
修改voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。 -
开始网络训练
train.py的默认参数用于训练VOC数据集,直接运行train.py即可开始训练。 -
训练结果预测
训练结果预测需要用到两个文件,分别是detr.py和predict.py。我们首先需要去detr.py里面修改model_path以及classes_path,这两个参数必须要修改。
model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
-
数据集的准备
本文使用VOC格式进行训练,训练前需要自己制作好数据集,
训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。 -
数据集的处理
在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt和2007_val.txt。
修改voc_annotation.py里面的参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。
训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。
model_data/cls_classes.txt文件内容为:
cat
dog
...
修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py。
-
开始网络训练
训练的参数较多,均在train.py中,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。
classes_path用于指向检测类别所对应的txt,这个txt和voc_annotation.py里面的txt一样!训练自己的数据集必须要修改!
修改完classes_path后就可以运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。 -
训练结果预测
训练结果预测需要用到两个文件,分别是detr.py和predict.py。在detr.py里面修改model_path以及classes_path。
model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
- 下载完库后解压,在百度网盘下载detr_resnet50_weights_coco.pth,放入model_data,运行predict.py,输入
img/street.jpg
- 在predict.py里面进行设置可以进行fps测试和video视频检测。
- 按照训练步骤训练。
- 在detr.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类。
_defaults = {
#--------------------------------------------------------------------------#
# 使用自己训练好的模型进行预测一定要修改model_path和classes_path!
# model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
#
# 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
# 验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
# 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
#--------------------------------------------------------------------------#
"model_path" : 'model_data/detr_resnet50_weights_coco.pth',
"classes_path" : 'model_data/coco_classes.txt',
#---------------------------------------------------------------------#
# 输入图片的大小
#---------------------------------------------------------------------#
"min_length" : 800,
#---------------------------------------------------------------------#
# 只有得分大于置信度的预测框会被保留下来
#---------------------------------------------------------------------#
"confidence" : 0.5,
#---------------------------------------------------------------------#
# 主干网络的种类
#---------------------------------------------------------------------#
"backbone" : 'resnet50',
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
"cuda" : True,
}
- 运行predict.py,输入
img/street.jpg
- 在predict.py里面进行设置可以进行fps测试和video视频检测。
- 本文使用VOC格式进行评估。VOC07+12已经划分好了测试集,无需利用voc_annotation.py生成ImageSets文件夹下的txt。
- 在detr.py里面修改model_path以及classes_path。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。
- 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。
- 本文使用VOC格式进行评估。
- 如果在训练前已经运行过voc_annotation.py文件,代码会自动将数据集划分成训练集、验证集和测试集。如果想要修改测试集的比例,可以修改voc_annotation.py文件下的trainval_percent。trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1。train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1。
- 利用voc_annotation.py划分测试集后,前往get_map.py文件修改classes_path,classes_path用于指向检测类别所对应的txt,这个txt和训练时的txt一样。评估自己的数据集必须要修改。
- 在detr.py里面修改model_path以及classes_path。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。
- 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。