/GraphGPS

Recipe for a General, Powerful, Scalable Graph Transformer

Primary LanguagePythonMIT LicenseMIT

Exploring the Efficacy of Attention Mechanism in Graph Neural Networks

In this project, we conduct experiments to

  • Explore the importance of individual components in a Graph Transformer.
  • Discuss limitations of positional encodings.
  • Illustrate the performance of GATs on natural graphs.
  • Demonstrate our generic encoder on synthetic datasets.

We use the framework developed at GraphGPS to conduct our experiments and are grateful to the authors for making their framework open source and so seamless to work with.

Setup Python environment with Conda

conda create -n graphgps python=3.10
conda activate graphgps

conda install pytorch=1.13 torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
conda install pyg=2.2 -c pyg -c conda-forge
pip install pyg-lib -f https://data.pyg.org/whl/torch-1.13.0+cu117.html

# RDKit is required for OGB-LSC PCQM4Mv2 and datasets derived from it.  
conda install openbabel fsspec rdkit -c conda-forge

pip install pytorch-lightning yacs torchmetrics
pip install performer-pytorch
pip install tensorboardX
pip install ogb
pip install wandb

conda clean --all

Reproducing results

Ablation Study Experiment

We introduce a new config option pretrained.disable_layer to disable kth layer from the network at inference.

  • Training
    python main.py --cfg configs/cs762/zinc-GPS+RWSE-ckptbest.yaml
  • Inference
    python main.py --cfg configs/cs762/zinc-<module>.yaml pretrained.disable_layer <layer>

<module> is one of [MP, SA, FF] each corresponding to the message passing, self attention and feed forward network module. <layer> represents a 0-indexed layer to disable.

Experiments on robustness of LapPE

See the code for these experiments in the cs762 folder star_graph.ipynb and eigenstable.ipynb.

Generic Encoder

See our new encoder that implements our proposed algorithm at generic_node_encoder.py.

  • EDGES
    python main.py --cfg configs/cs762/edges-GNE.yaml
  • TRIANGLES
    python main.py --cfg configs/cs762/triangles-GNE.yaml

Other Experiments

We first need to train all the required models before we perform any inference on them.

Cora Dataset

  • For Training
    • LapPE
      python main.py --cfg custom_configs/cora-GPS.yaml wandb.use False
    • RWSE
      python main.py --cfg custom_configs/cora-GPS+RWSE.yaml wandb.use False
    • RWSE without Message Passing Neural Network
      python main.py --cfg custom_configs/cora-GPS-NoGNN+RWSE.yaml wandb.use False
    • Depth Scaling (uses LapPE): set the name_tag according to your convinience and gt.layers is used to alter the number of layers.
      python main.py --cfg custom_configs/cora-GPS+RWSE.yaml wandb.use False name_tag layers1 gt.layers 1
    • Dataset Scaling (uses LapPE): Use the corresponding config file cora-GPS-data40.yaml, cora-GPS-data50.yaml, cora-GPS-data60.yaml, cora-GPS-data70.yaml,. Original training uses 80% of the data.
      python main.py --cfg custom_configs/cora-GPS-data40.yaml wandb.use False
  • For Inference
    • LapPE
      python main.py --cfg custom_configs/cora-GPS-inference.yaml wandb.use False
    • RWSE
      python main.py --cfg custom_configs/cora-GPS+RWSE-inference.yaml wandb.use False
    • Depthscaling and Dataset Scaling: example shown for model with 1 transformer layer
      python main.py --cfg custom_configs/cora-GPS-inference.yaml wandb.use False pretrained.dir results/cora-GPS-layers1

Cifar10 and Zinc dataset

  • For Training
    • LapPE
      python main.py --cfg custom_configs/cifar10-GPS.yaml wandb.use False
      python main.py --cfg custom_configs/zinc-GPS.yaml wandb.use False
    • RWSE
      python main.py --cfg custom_configs/cifar10-GPS+RWSE.yaml wandb.use False
      python main.py --cfg custom_configs/zinc-GPS+RWSE.yaml wandb.use False
  • For Inference
    • RWSE
      python main.py --cfg custom_configs/cifar10-GPS+RWSE-inference.yaml wandb.use False
      python main.py --cfg custom_configs/zinc-GPS+RWSE-inference.yaml wandb.use False

GCN and GAT results

Experiment code for these results can be found in the GAT folder.

Mirror Dataset

We provide notebook mirror.ipynb to create a dataset of 10-node path graphs where the labels mirror node features. We provide the corresponding dataset loader at mirror.py.


GraphGPS: General Powerful Scalable Graph Transformers

arXiv PWC

GraphGPS-viz

How to build a graph Transformer? We provide a 3-part recipe on how to build graph Transformers with linear complexity. Our GPS recipe consists of choosing 3 main ingredients:

  1. positional/structural encoding: LapPE, RWSE, SignNet, EquivStableLapPE
  2. local message-passing mechanism: GatedGCN, GINE, PNA
  3. global attention mechanism: Transformer, Performer, BigBird

In this GraphGPS package we provide several positional/structural encodings and model choices, implementing the GPS recipe. GraphGPS is built using PyG and GraphGym from PyG2. Specifically PyG v2.2 is required.

Running GraphGPS

conda activate graphgps

# Running GPS with RWSE and tuned hyperparameters for ZINC.
python main.py --cfg configs/GPS/zinc-GPS+RWSE.yaml  wandb.use False

# Running config with tuned SAN hyperparams for ZINC.
python main.py --cfg configs/SAN/zinc-SAN.yaml  wandb.use False

# Running a debug/dev config for ZINC.
python main.py --cfg tests/configs/graph/zinc.yaml  wandb.use False

Running GraphGPS on OGB-LSC PCQM4Mv2

Training

# "small" GPS (GatedGCN+Transformer) with RWSE: 5layers, 304dim, 6152001 params 
python main.py --cfg configs/GPS/pcqm4m-GPS+RWSE.yaml
# "medium" GPS (GatedGCN+Transformer) with RWSE: 10layers, 384dim, 19414641 params
python main.py --cfg configs/GPS/pcqm4m-GPSmedium+RWSE.yaml
# "deep" GPS (GatedGCN+Transformer) with RWSE: 16layers, 256dim, 13807345 params
python main.py --cfg configs/GPS/pcqm4m-GPSdeep+RWSE.yaml

Expected performance

  • Note 1: For training we set aside 150k molecules as a custom validation set for the model selection / early stopping. The official valid set is used as the testing set in our training setup. For running inference on test-dev and test-challenge look further below.

  • Note 2: GPS-medium took ~48h, GPS-deep ~60h to train on a single NVidia A100 GPU. Your reproduced results may slightly vary.

  • Note 3: This version of GPS does not use 3D atomic position information.

Model config parameters train MAE custom valid MAE official valid MAE
GPS-small 6,152,001 0.0638 0.0849 0.0937
GPS-medium 19,414,641 0.0726 0.0805 0.0858
GPS-deep 13,807,345 0.0641 0.0796 0.0852

Inference and submission files for OGB-LSC leaderboard

You need a saved pretrained model from the previous step, then run it with an "inference" script that loads official valid, test-dev, and test-challenge splits, then runs inference, and the official OGB Evaluator.

# You can download our pretrained GPS-deep (151 MB).
wget https://www.dropbox.com/s/aomimvak4gb6et3/pcqm4m-GPS%2BRWSE.deep.zip
unzip pcqm4m-GPS+RWSE.deep.zip -d pretrained/

# Run inference and official OGB Evaluator.
python main.py --cfg configs/GPS/pcqm4m-GPSdeep-inference.yaml 

# Result files for OGB-LSC Leaderboard.
results/pcqm4m-GPSdeep-inference/0/y_pred_pcqm4m-v2_test-challenge.npz
results/pcqm4m-GPSdeep-inference/0/y_pred_pcqm4m-v2_test-dev.npz

Benchmarking GPS on 11 datasets

See run/run_experiments.sh script to run multiple random seeds per each of the 11 datasets. We rely on Slurm job scheduling system.

Alternatively, you can run them in terminal following the example below. Configs for all 11 datasets are in configs/GPS/.

conda activate graphgps
# Run 10 repeats with 10 different random seeds (0..9):
python main.py --cfg configs/GPS/zinc-GPS+RWSE.yaml  --repeat 10  wandb.use False
# Run a particular random seed:
python main.py --cfg configs/GPS/zinc-GPS+RWSE.yaml  --repeat 1  seed 42  wandb.use False

W&B logging

To use W&B logging, set wandb.use True and have a gtransformers entity set-up in your W&B account (or change it to whatever else you like by setting wandb.entity).

Unit tests

To run all unit tests, execute from the project root directory:

python -m unittest -v

Or specify a particular test module, e.g.:

python -m unittest -v unittests.test_eigvecs

Citation

If you find this work useful, please cite our NeurIPS 2022 paper:

@article{rampasek2022GPS,
  title={{Recipe for a General, Powerful, Scalable Graph Transformer}}, 
  author={Ladislav Ramp\'{a}\v{s}ek and Mikhail Galkin and Vijay Prakash Dwivedi and Anh Tuan Luu and Guy Wolf and Dominique Beaini},
  journal={Advances in Neural Information Processing Systems},
  volume={35},
  year={2022}
}