/LANKA

Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

Primary LanguagePython

LANKA

This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper)

Reference

If this repository helps you, please kindly cite the following bibtext:

@inproceedings{cao-etal-2021-knowledgeable,
    title = "Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases",
    author = "Cao, Boxi  and
      Lin, Hongyu  and
      Han, Xianpei  and
      Sun, Le  and
      Yan, Lingyong  and
      Liao, Meng  and
      Xue, Tong  and
      Xu, Jin",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.146",
    pages = "1860--1874"}

Usage

To reproduce our results:

1. Create conda environment and install requirements

git clone https://github.com/c-box/LANKA.git
cd LANKA
conda create --name lanka python=3.7
conda activate lanka
pip install -r requirements.txt

2. Download the data

3. Run the experiments

If your GPU is smaller than 24G, please adjust batch size using "--batch-size" parameter.

3.1 Prompt-based Retrieval

  • Evaluate the precision on LAMA and WIKI-UNI using different prompts:

    • Manually prompts created by Petroni et al. (2019)

      python -m scripts.run_prompt_based --relation-type lama_original --model-name bert-large-cased --method evaluation --cuda-device [device] --batch-size [batch_size]
    • Mining-based prompts by Jiang et al. (2020b)

      python -m scripts.run_prompt_based --relation-type lama_mine --model-name bert-large-cased --method evaluation --cuda-device [device]
    • Automatically searched prompts from Shin et al. (2020)

      python -m scripts.run_prompt_based --relation-type lama_auto --model-name bert-large-cased --method evaluation --cuda-device [device]
  • Store various distributions needed for subsequent experiments:

    python -m scripts.run_prompt_based --model-name bert-large-cased --method store_all_distribution --cuda-device [device]
  • Calculate the average percentage of instances being covered by top-k answers or predictions (Table 1):

    python -m scripts.run_prompt_based --model-name bert-large-cased --method topk_cover --cuda-device [device]
  • Calculate the Pearson correlations of the prediction distributions on LAMA and WIKI-UNI (Figure 3, the figures will be stored in the 'pics' folder):

    python -m scripts.run_prompt_based --model-name bert-large-cased --method prediction_corr --cuda-device [device]
  • Calculate the Pearson correlations between the prompt-only distribution and prediction distribution on WIKI-UNI (Figure 4):

    python -m scripts.run_prompt_based --model-name bert-large-cased --method prompt_only_corr --cuda-device [device]
  • Calculate the KL divergence between the prompt-only distribution and golden answer distribution of LAMA (Table 2):

    python -m scripts.run_prompt_based --relation-type [relation_type] --model-name bert-large-cased --method cal_prompt_only_div --cuda-device [device]

3.2 Case-based Analogy

  • Evaluate case-based paradigm:

    python -m scripts.run_case_based --model-name bert-large-cased --task evaluate_analogy_reasoning --cuda-device [device]
  • Detailed comparison for prompt-based and case-based paradigms (precision, type precision, type change, etc.) (Table 4):

    python -m scripts.run_case_based --model-name bert-large-cased --task type_precision --cuda-device [device]
  • Calculate the in-type rank change (Figure 6):

    python -m scripts.run_case_based --model-name bert-large-cased --task type_rank_change --cuda-device [device]

3.3 Context-based Inference

  • For explicit answer leakage (Table 5 and 6):

    python -m scripts.run_context_based --model-name bert-large-cased --method explicit_leak --cuda-device [device]
  • For implicit answer leakage (Table 7):

    python -m scripts.run_context_based --model-name bert-large-cased --method implicit_leak --cuda-device [device]