Count and truncate text based on tokens
Large language models such as GPT-3.5 and GPT-4 work in terms of tokens.
This tool can count tokens, using OpenAI's tiktoken library.
It can also truncate text to a specified number of tokens.
See llm, ttok and strip-tags—CLI tools for working with ChatGPT and other LLMs for more on this project.
Install this tool using pip
:
pip install ttok
Provide text as arguments to this tool to count tokens:
ttok Hello world
2
You can also pipe text into the tool:
echo -n "Hello world" | ttok
2
Here the echo -n
option prevents echo from adding a newline - without that you would get a token count of 3.
To pipe in text and then append extra tokens from arguments, use the -i -
option:
echo -n "Hello world" | ttok more text -i -
6
By default, the tokenizer model for GPT-3.5 and GPT-4 is used.
To use the model for GPT-2 and GPT-3, add --model gpt2
:
ttok boo Hello there this is -m gpt2
6
Compared to GPT-3.5:
ttok boo Hello there this is
5
Further model options are documented here.
Use the -t 10
or --truncate 10
option to truncate text to a specified number of tokens:
ttok This is too many tokens -t 3
This is too
The --tokens
option can be used to view the integer token IDs for the incoming text:
ttok Hello world --tokens
9906 1917
Usage: ttok [OPTIONS] [PROMPT]...
Count and truncate text based on tokens
To count tokens for text passed as arguments:
ttok one two three
To count tokens from stdin:
cat input.txt | ttok
To truncate to 100 tokens:
cat input.txt | ttok -t 100
To truncate to 100 tokens using the gpt2 model:
cat input.txt | ttok -t 100 -m gpt2
To view tokens:
cat input.txt | ttok --tokens
Options:
--version Show the version and exit.
-i, --input FILENAME
-t, --truncate INTEGER Truncate to this many tokens
-m, --model TEXT Which model to use
--tokens Output token integers
--help Show this message and exit.
You can also run this command using:
python -m ttok --help
To contribute to this tool, first checkout the code. Then create a new virtual environment:
cd ttok
python -m venv venv
source venv/bin/activate
Now install the dependencies and test dependencies:
pip install -e '.[test]'
To run the tests:
pytest