/ttok

Count and truncate text based on tokens

Primary LanguagePythonApache License 2.0Apache-2.0

ttok

PyPI Changelog Tests License

Count and truncate text based on tokens

Background

Large language models such as GPT-3.5 and GPT-4 work in terms of tokens.

This tool can count tokens, using OpenAI's tiktoken library.

It can also truncate text to a specified number of tokens.

See llm, ttok and strip-tags—CLI tools for working with ChatGPT and other LLMs for more on this project.

Installation

Install this tool using pip:

pip install ttok

Counting tokens

Provide text as arguments to this tool to count tokens:

ttok Hello world
2

You can also pipe text into the tool:

echo -n "Hello world" | ttok
2

Here the echo -n option prevents echo from adding a newline - without that you would get a token count of 3.

To pipe in text and then append extra tokens from arguments, use the -i - option:

echo -n "Hello world" | ttok more text -i -
6

Different models

By default, the tokenizer model for GPT-3.5 and GPT-4 is used.

To use the model for GPT-2 and GPT-3, add --model gpt2:

ttok boo Hello there this is -m gpt2
6

Compared to GPT-3.5:

ttok boo Hello there this is
5

Further model options are documented here.

Truncating text

Use the -t 10 or --truncate 10 option to truncate text to a specified number of tokens:

ttok This is too many tokens -t 3
This is too

Viewing tokens

The --tokens option can be used to view the integer token IDs for the incoming text:

ttok Hello world --tokens
9906 1917

ttok --help

Usage: ttok [OPTIONS] [PROMPT]...

  Count and truncate text based on tokens

  To count tokens for text passed as arguments:

      ttok one two three

  To count tokens from stdin:

      cat input.txt | ttok

  To truncate to 100 tokens:

      cat input.txt | ttok -t 100

  To truncate to 100 tokens using the gpt2 model:

      cat input.txt | ttok -t 100 -m gpt2

  To view tokens:

      cat input.txt | ttok --tokens

Options:
  --version               Show the version and exit.
  -i, --input FILENAME
  -t, --truncate INTEGER  Truncate to this many tokens
  -m, --model TEXT        Which model to use
  --tokens                Output token integers
  --help                  Show this message and exit.

You can also run this command using:

python -m ttok --help

Development

To contribute to this tool, first checkout the code. Then create a new virtual environment:

cd ttok
python -m venv venv
source venv/bin/activate

Now install the dependencies and test dependencies:

pip install -e '.[test]'

To run the tests:

pytest