Thanks to allanzelener,this paper is under Python2.7
You only look once, but you reimplement neural nets over and over again.
YAD2K is a 90% Keras/10% Tensorflow implementation of YOLO_v2.
Original paper: YOLO9000: Better, Faster, Stronger by Joseph Redmond and Ali Farhadi[1].
- Keras
- Tensorflow
- Numpy
- h5py (For Keras model serialization.)
- Pillow (For rendering test results.)
- Python 2
- pydot-ng (Optional for plotting model.)
- ubuntu16.04
- CPU i7 7700
git clone https://github.com/cableyang/yad2k.git
cd yad2k
# [Option 1] To replicate the conda environment:
conda env create -f environment.yml
source activate yad2k
# [Option 2] Install everything globaly.
pip install numpy h5py pillow
pip install tensorflow-gpu # CPU-only: conda install -c conda-forge tensorflow
pip install keras # Possibly older release: conda install keras
- Download Darknet model cfg and weights from the official YOLO website.
- Convert the Darknet YOLO_v2 model to a Keras model.
- Test the converted model on the small test set in
images/
.
#get the yolo weights from yolo website,is not possible ,
#u can also download from baidu yun,the url is: https://pan.baidu.com/s/1smRMvBv
wget http://pjreddie.com/media/files/yolo.weights
wget https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolo.cfg
###create .h5 files for kearas framework,
##here is my yolo.h5: https://pan.baidu.com/s/1kVVgj5d
./yad2k.py yolo.cfg yolo.weights model_data/yolo.h5
### use test_yolo and .h5 weights to predict images from ./images/*.jpg,resulsts are stored on ./images/out/*
./test_yolo.py model_data/yolo.h5 # output in images/out/
See ./yad2k.py --help
and ./test_yolo.py --help
for more options.
The YAD2K converter currently only supports YOLO_v2 style models, this include the following configurations: darknet19_448
, tiny-yolo-voc
, yolo-voc
, and yolo
.
yad2k.py -p
will produce a plot of the generated Keras model. For example see yolo.png.
YAD2K assumes the Keras backend is Tensorflow. In particular for YOLO_v2 models with a passthrough layer, YAD2K uses tf.space_to_depth
to implement the passthrough layer. The evaluation script also directly uses Tensorflow tensors and uses tf.non_max_suppression
for the final output.
voc_conversion_scripts
contains two scripts for converting the Pascal VOC image dataset with XML annotations to either HDF5 or TFRecords format for easier training with Keras or Tensorflow.
yad2k/models
contains reference implementations of Darknet-19 and YOLO_v2.
train_overfit
is a sample training script that overfits a YOLO_v2 model to a single image from the Pascal VOC dataset.
- Expand sample training script to train YOLO_v2 reference model on full dataset.
- Support for additional Darknet layer types.
- Tuck away the Tensorflow dependencies with Keras wrappers where possible.
- YOLO_v2 model does not support fully convolutional mode. Current implementation assumes 1:1 aspect ratio images.
[1]https://github.com/allanzelener/YAD2K