/MAE-pytorch

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Primary LanguagePython

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

This repository is built upon BEiT, thanks very much!

Now, we implement the pretrain and finetune process according to the paper, but still can't guarantee the performance reported in the paper can be reproduced!

Difference

shuffle and unshuffle

shuffle and unshuffle operations don't seem to be directly accessible in pytorch, so we use another method to realize this process:

  • For shuffle, we used the method of randomly generating mask-map (14x14) in BEiT, where mask=0 illustrates keeping the token, mask=1 denotes dropping the token (not participating caculation in Encoder). Then all visible tokens (mask=0) are fed into encoder network.
  • For unshuffle, we get the postion embeddings (with adding the shared mask token) of all masked tokens according to the mask-map and then concate them with the visible tokens (from encoder), and feed them into the decoder network to recontrust.

sine-cosine positional embeddings

The positional embeddings mentioned in the paper is sine-cosine version. And we adopt the implemention of here, but it seems like a 1-D embeddings not 2-D's. So we don't know what effect it will bring.

TODO

  • implement the finetune process
  • reuse the model in modeling_pretrain.py
  • caculate the normalized pixels target
  • add the cls token in the encoder
  • visualization of reconstruction image
  • knn and linear prob
  • ...

Setup

pip install -r requirements.txt

Run

  1. Pretrain
# Set the path to save checkpoints
OUTPUT_DIR='output/pretrain_mae_base_patch16_224'
# path to imagenet-1k train set
DATA_PATH='/path/to/ImageNet_ILSVRC2012/train'


OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 run_mae_pretraining.py \
        --data_path ${DATA_PATH} \
        --mask_ratio 0.75 \
        --model pretrain_mae_base_patch16_224 \
        --batch_size 128 \
        --opt adamw \
        --opt_betas 0.9 0.95 \
        --warmup_epochs 40 \
        --epochs 1600 \
        --output_dir ${OUTPUT_DIR}
  1. Finetune
# Set the path to save checkpoints
OUTPUT_DIR='output/'
# path to imagenet-1k set
DATA_PATH='/path/to/ImageNet_ILSVRC2012'
# path to pretrain model
MODEL_PATH='/path/to/pretrain/checkpoint.pth'

OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 run_class_finetuning.py \
    --model vit_base_patch16_224 \
    --data_path ${DATA_PATH} \
    --finetune ${MODEL_PATH} \
    --output_dir ${OUTPUT_DIR} \
    --batch_size 128 \
    --opt adamw \
    --opt_betas 0.9 0.999 \
    --weight_decay 0.05 \
    --epochs 100 \
    --dist_eval

Result

model pretrain finetune accuracy log weight
vit-base 400e 100e 83.1% pretrain finetune on the way

Due to the limited gpus, it's really a chanllenge for us to pretrain with larger model or longer schedule mentioned in the paper.

So if one can fininsh it, please feel free report it in the issue or push a PR, thank you!

And your star is my motivation, thank u~