People always use curl or HUE to upload jar and run spark job in Spark Job Server. But the Spark Job Server official only presents the rest apis to upload job jar and run a job, doesn't give client lib with any language implementation.
Now there is another option to communicate with spark job server in Java, that is Spark-Job-Server-Client, the Java Client of the Spark Job Server implementing the arranged Rest APIs.
Spark-Job-Server-Client is a open-source program of org.khaleesi.carfield under Apache License v2. It aims to make the java applications use the spark more easily.
You can execute the following commands to compile this client:
git clone https://github.com/bluebreezecf/SparkJobServerClient.git
cd SparkJobServerClient
mvn clean package -Dmaven.test.skip=true
Then you can findspark-job-server-client-1.0.0.jar
in SparkJobServerClient/target, it is the main jar of spark-job-server-client. Besides, spark-job-server-client-1.0.0-sources.jar
is the java source jar, and spark-job-server-client-1.0.0-javadoc.jar
is the java doc api jar.
There are two kind of spark-job-servier-client, accordingly there are two approaches to set the dependency:
- Use the whole version of spark-job-servier-client
- Add spark-job-server-client-1.0.0.jar to src/main/resources/lib folder of your application
- Add the following contents to the pom.xml
<dependency>
<groupId>org.khaleesi.carfield</groupId>
<artifactId>spark-job-server-client</artifactId>
<version>1.0.0</version>
<scope>system</scope>
<systemPath>${project.basedir}/src/main/resources/lib/spark-job-server-client-1.0.0.jar</systemPath>
</dependency>
- Use the standalone version of spark-job-servier-client
- Install spark-job-servier-client to your local maven repository with
mvn clean install
- Add the following contents to the pom.xml
<dependency>
<groupId>org.khaleesi.carfield</groupId>
<artifactId>spark-job-server-client</artifactId>
<version>1.0.0</version>
</dependency>
The following sample codes shows how to use spark-job-server-client:
import java.io.File;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.khaleesi.carfield.tools.sparkjobserver.api.ISparkJobServerClient;
import org.khaleesi.carfield.tools.sparkjobserver.api.ISparkJobServerClientConstants;
import org.khaleesi.carfield.tools.sparkjobserver.api.SparkJobConfig;
import org.khaleesi.carfield.tools.sparkjobserver.api.SparkJobInfo;
import org.khaleesi.carfield.tools.sparkjobserver.api.SparkJobJarInfo;
import org.khaleesi.carfield.tools.sparkjobserver.api.SparkJobResult;
import org.khaleesi.carfield.tools.sparkjobserver.api.SparkJobServerClientException;
import org.khaleesi.carfield.tools.sparkjobserver.api.SparkJobServerClientFactory;
/**
* A sample shows how to use spark-job-server-client.
*
* @author bluebreezecf
* @since 2014-09-16
*
*/
public class SparkJobServerClientTest {
public static void main(String[] args) {
ISparkJobServerClient client = null;
try {
client = SparkJobServerClientFactory.getInstance().createSparkJobServerClient("http://localhost:8090/");
//GET /jars
List<SparkJobJarInfo> jarInfos = client.getJars();
for (SparkJobJarInfo jarInfo: jarInfos) {
System.out.println(jarInfo.toString());
}
//POST /jars/<appName>
client.uploadSparkJobJar(new File("d:\\spark-examples_2.10-1.0.2.jar"), "spark-test");
//GET /contexts
List<String> contexts = client.getContexts();
System.out.println("Current contexts:");
for (String cxt: contexts) {
System.out.println(cxt);
}
//POST /contexts/<name>--Create context with name ctxTest and null parameter
client.createContext("ctxTest", null);
//POST /contexts/<name>--Create context with parameters
Map<String, String> params = new HashMap<String, String>();
params.put(ISparkJobServerClientConstants.PARAM_MEM_PER_NODE, "512m");
params.put(ISparkJobServerClientConstants.PARAM_NUM_CPU_CORES, "10");
client.createContext("cxtTest2", params);
//DELETE /contexts/<name>
client.deleteContext("ctxTest");
//GET /jobs
List<SparkJobInfo> jobInfos = client.getJobs();
System.out.println("Current jobs:");
for (SparkJobInfo jobInfo: jobInfos) {
System.out.println(jobInfo);
}
//Post /jobs---Create a new job
params.put(ISparkJobServerClientConstants.PARAM_APP_NAME, "spark-test");
params.put(ISparkJobServerClientConstants.PARAM_CLASS_PATH, "spark.jobserver.WordCountExample");
//1.start a spark job asynchronously and just get the status information
SparkJobResult result = client.startJob("input.string= fdsafd dfsf blullkfdsoflaw fsdfs", params);
System.out.println(result);
//2.start a spark job synchronously and wait until the result
params.put(ISparkJobServerClientConstants.PARAM_CONTEXT, "cxtTest2");
params.put(ISparkJobServerClientConstants.PARAM_SYNC, "true");
result = client.startJob("input.string= fdsafd dfsf blullkfdsoflaw fsdffdsfsfs", params);
System.out.println(result);
//GET /jobs/<jobId>---Gets the result or status of a specific job
result = client.getJobResult("fdsfsfdfwfef");
System.out.println(result);
//GET /jobs/<jobId>/config - Gets the job configuration
SparkJobConfig jobConfig = client.getConfig("fdsfsfdfwfef");
System.out.println(jobConfig);
} catch (SparkJobServerClientException e1) {
e1.printStackTrace();
} catch (Exception e) {
e.printStackTrace();
}
}
}
Anyone interested in this program can do the following things:
Fork
it to your own git repository.- Create a new branch for your feature via
git checkout -b your-new-feature
. - Add or modify new codes.
- Commit the modifications through
git commit -am 'add your new feature'
. - Push the new branch by
git push origin your-new-feature
. - Create a new
pull request
.
Any questions and discussions can be added in [SparkJobServerClient/issues] (https://github.com/bluebreezecf/SparkJobServerClient/issues)