/schemantic

Multi-model/class paradigm for creating and parsing schemas 📜

Primary LanguagePythonBSD 4-Clause "Original" or "Old" LicenseBSD-4-Clause

Schemantic

Create schemas from models or classes with homologous, grouped, or cultured paradigms.

Best with pydantic.BaseModel instances, but works with any Python class and dataclass/pydantic.dataclass!

Classes of schemas

Homolog

from pydantic import BaseModel
from ordered_set import OrderedSet
from schemantic.schema import HomologSchema

class Thief(BaseModel):
    stolen_goods: int
    steals_only: str

my_homolog = HomologSchema.from_model(Thief, instance_names=OrderedSet(["copycat", "pink_panther"]))

Grouped

You can manage multiple schemas as a group:

from pydantic import BaseModel
from schemantic.schema import GroupSchema

class Baker(BaseModel):
    baked_goods: int
    citizen_of: str

class Cop(BaseModel):
    years_of_service: int
    citizen_of: str

group_schema = GroupSchema.from_originating_types([Baker, Cop], )

Culture

You can also manage multiple types of schemas under one culture:

from ordered_set import OrderedSet
from schemantic.schema import CultureSchema

CultureSchema(source_schemas=OrderedSet([homolog_schema, group_schema]))

Methods

HomologSchema, GroupSchema, and CultureSchema have the following methods.

.schema()

Creates a dictionary, which represents the schema of the origin class/model.

my_homolog.schema()

Output:

"class_name": "Thief"
"common": {
    steals_only: "jewelry"
}
"copycat": {}
"pink_panther": {}
"required": ["stolen_goods", "steals_only"]
"field_to_info": {"stolen_goods": "integer"}

.dump()

Dump the dictionary from .schema() to a yaml or toml file.

my_schema.dump("my/path/schema.yaml")
# There is also toml support
my_schema.dump("my/path/schema.toml")

.parse()

"class_name": "Thief"
"common": {
    steals_only: "jewelry"
}
"copycat": {
    stolen_goods: 10
}
"pink_panther": {
    stolen_goods: 14
}
"required": ["stolen_goods", "steals_only"]
"field_to_info": {"stolen_goods": "integer"}
parsed = my_homolog.parse_schema("my/path/schema.yaml")

# parsed["copycat"].stolen_goods == 10
# parsed["pink_panther"].stolen_goods == 14

# Both -> steals_only == "jewelry"

Class configuration

Use schemantic.project module to control schemantic processing from the origin class/model side.

Classes and dataclasses

from dataclasses import dataclass
from typing import Optional, Union

from schemantic.project import SchemanticProjectMixin


@dataclass
class TestDataclass(SchemanticProjectMixin):
    must_be: int
    we: str = "n"

    n: None = None
    age: Optional[int] = None
    new_age: Union[int, str, None] = None

    exclude_me: Optional[int] = None
    _exclude_me_too: Optional[float] = None

    @classmethod
    @property
    def fields_to_exclude_from_single_schema(cls) -> set[str]:
        upstream = super().fields_to_exclude_from_single_schema
        upstream.update(("exclude_me",))
        return upstream

This will exclude exclude_me (defined in fields_to_exclude_from_single_schema) and _exclude_me_too (private).

Same for pydantic.BaseModel:

from typing import Optional, Union

from pydantic import BaseModel, computed_field

from schemantic.project import SchemanticProjectModelMixin


class TestModel(SchemanticProjectModelMixin, BaseModel):
    must_be: int
    we: str = "n"

    n: None = None
    age: Optional[int] = None
    new_age: Union[int, str, None] = None

    exclude_me: Optional[int] = None
    _exclude_me_too: Optional[float] = None

    @classmethod  # type: ignore[misc]
    @computed_field(return_type=set[str])
    @property
    def fields_to_exclude_from_single_schema(cls) -> set[str]:
        upstream = super().fields_to_exclude_from_single_schema
        upstream.update(("exclude_me",))
        return upstream

Install

pip install schemantic

For toml or yaml dumping and parsing

pip install schemantic[toml]
pip install schemantic[yaml]