/streaming-at-scale

How to implement a streaming at scale solution in Azure

Primary LanguageShellMIT LicenseMIT

page_type languages products statusNotificationTargets description
sample
azurecli
csharp
json
sql
scala
azure
azure-container-instances
azure-cosmos-db
azure-databricks
azure-event-hubs
azure-functions
azure-sql-database
azure-stream-analytics
azure-storage
damauri@microsoft.com
How to setup an end-to-end solution to implement a streaming at scale scenario using a choice of different Azure technologies.

Streaming at Scale

The samples shows how to setup an end-to-end solution to implement a streaming at scale scenario using a choice of different Azure technologies. There are many possible way to implement such solution in Azure, following Kappa or Lambda architectures, a variation of them, or even custom ones. Each architectural solution can also be implemented with different technologies, each one with its own pros and cons.

More info on Streaming architectures can also be found here:

Here's also a list of scenarios where a Streaming solution fits nicely

A good document the describes the Stream Technologies available on Azure is the following one:

Choosing a stream processing technology in Azure

The goal of this repository is to showcase all the possible common architectural solution and implementation, describe the pros and the cons and provide you with sample script to deploy the whole solution with 100% automation.

Running the samples

Please note that the scripts have been tested on Ubuntu 18 LTS, so make sure to use that environment to run the scripts. You can run it using Docker, WSL or a VM:

Just do a git clone of the repo and you'll be good to go.

Each sample may have additional requirements: they will be listed in the sample's README.

Streamed Data

Streamed data simulates an IoT device sending the following JSON data:

{
    "eventId": "b81d241f-5187-40b0-ab2a-940faf9757c0",
    "complexData": {
        "moreData0": 57.739726013343247,
        "moreData1": 52.230732688620829,
        "moreData2": 57.497518587807189,
        "moreData3": 81.32211656749469,
        "moreData4": 54.412361539409427,
        "moreData5": 75.36416309399911,
        "moreData6": 71.53407865773488,
        "moreData7": 45.34076957651598,
        "moreData8": 51.3068118685458,
        "moreData9": 44.44672606436184,
        [...]
    },
    "value": 49.02278128887753,
    "deviceId": "contoso://device-id-154",
    "type": "CO2",
    "createdAt": "2019-05-16T17:16:40.000003Z"
}

Available solutions

At present time the available solutions are

Implement stream processing architecture using:

  • Event Hubs (Ingest)
  • Event Hubs Capture (Store)
  • Azure Blob Store (Data Lake)
  • Apache Drill (Query/Serve)

Implement a stream processing architecture using:

  • Event Hubs (Ingest / Immutable Log)
  • Azure Databricks (Stream Process)
  • Azure SQL (Serve)

Implement a stream processing architecture using:

  • Event Hubs (Ingest / Immutable Log)
  • Azure Databricks (Stream Process)
  • Cosmos DB (Serve)

Implement a stream processing architecture using:

  • Event Hubs (Ingest / Immutable Log)
  • Azure Databricks (Stream Process)
  • Delta Tables (Serve)

Implement a stream processing architecture using:

  • Event Hubs (Ingest / Immutable Log)
  • Azure Functions (Stream Process)
  • Azure SQL (Serve)

Implement a stream processing architecture using:

  • Event Hubs (Ingest / Immutable Log)
  • Azure Functions (Stream Process)
  • Cosmos DB (Serve)

Implement a stream processing architecture using:

  • Event Hubs (Ingest / Immutable Log)
  • Stream Analytics (Stream Process)
  • Cosmos DB (Serve)

Implement a stream processing architecture using:

  • Event Hubs (Ingest / Immutable Log)
  • Stream Analytics (Stream Process)
  • Azure SQL (Serve)

Implement a stream processing architecture using:

  • Event Hubs (Ingest / Immutable Log)
  • Stream Analytics (Stream Process)
  • Event Hubs (Serve)

Note

Performance and Services change quickly in the cloud, so please keep in mind that all values used in the samples were tested at them moment of writing. If you find any discrepancies with what you observe when running the scripts, please create an issue and report it and/or create a PR to update the documentation and the sample. Thanks!

Roadmap

The following technologies could also be used in the end-to-end sample solution. If you want to contribute, feel free to do so, we'll be more than happy to get some help!

Ingestion

  • IoT Hub
  • EventHub Kafka

Stream Processing

  • Azure Data Explorer

Batch Processing

  • Databricks Spark
  • Azure Data Explorer

Serving Layer

  • Azure Data Explorer
  • Azure DW