/Facial-Expression-Recognition

10月11:fer2013 Competition Dataset is used to train the model which predicts facial expressions

Primary LanguageJupyter NotebookMIT LicenseMIT

Facial Expression Recognition

It is based on competition organised by kaggle in 2013:-
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/leaderboard

Top accuracies in that competitions were :-
71%
69%
68%

Here we have got 65% accuracy:-

Loss: 0.9379754525168954
Accuracy: 0.6540819169851225

Output:-

Screenshot from 2019-07-27 20-40-57

Architecture that we have used is :-

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 46, 46, 64)        640       
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 46, 46, 64)        36928     
_________________________________________________________________
batch_normalization_1 (Batch (None, 46, 46, 64)        256       
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 23, 23, 64)        0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 23, 23, 64)        0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 23, 23, 128)       73856     
_________________________________________________________________
batch_normalization_2 (Batch (None, 23, 23, 128)       512       
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 23, 23, 128)       147584    
_________________________________________________________________
batch_normalization_3 (Batch (None, 23, 23, 128)       512       
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 11, 11, 128)       0         
_________________________________________________________________
dropout_2 (Dropout)          (None, 11, 11, 128)       0         
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 11, 11, 256)       295168    
_________________________________________________________________
batch_normalization_4 (Batch (None, 11, 11, 256)       1024      
_________________________________________________________________
conv2d_6 (Conv2D)            (None, 11, 11, 256)       590080    
_________________________________________________________________
batch_normalization_5 (Batch (None, 11, 11, 256)       1024      
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 5, 5, 256)         0         
_________________________________________________________________
dropout_3 (Dropout)          (None, 5, 5, 256)         0         
_________________________________________________________________
conv2d_7 (Conv2D)            (None, 5, 5, 512)         1180160   
_________________________________________________________________
batch_normalization_6 (Batch (None, 5, 5, 512)         2048      
_________________________________________________________________
conv2d_8 (Conv2D)            (None, 5, 5, 512)         2359808   
_________________________________________________________________
batch_normalization_7 (Batch (None, 5, 5, 512)         2048      
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 2, 2, 512)         0         
_________________________________________________________________
dropout_4 (Dropout)          (None, 2, 2, 512)         0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 2048)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 512)               1049088   
_________________________________________________________________
dropout_5 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 256)               131328    
_________________________________________________________________
dropout_6 (Dropout)          (None, 256)               0         
_________________________________________________________________
dense_3 (Dense)              (None, 128)               32896     
_________________________________________________________________
dropout_7 (Dropout)          (None, 128)               0         
_________________________________________________________________
dense_4 (Dense)              (None, 7)                 903       
=================================================================
Total params: 5,905,863
Trainable params: 5,902,151
Non-trainable params: 3,712
____________________________