_|_|_|_| _|
_| _|_|_| _| _| _|_| _| _|_|
_|_|_| _| _| _|_| _|_|_|_| _|_|
_| _| _| _| _| _| _|
_| _|_|_| _| _| _|_|_| _|
Faker is a Python package that generates fake data for you. Whether you need to bootstrap your database, create good-looking XML documents, fill-in your persistence to stress test it, or anonymize data taken from a production service, Faker is for you.
Faker is heavily inspired by PHP's Faker, Perl's Data::Faker, and by ruby's Faker.
For more details, see the extended docs.
Install with pip:
pip install fake-factory
Use faker.Factory.create()
to create and initialize a faker generator, which can generate data by accessing properties named after the type of data you want.
from faker import Factory
fake = Factory.create()
# OR
from faker import Faker
fake = Faker()
fake.name()
# 'Lucy Cechtelar'
fake.address()
# "426 Jordy Lodge
# Cartwrightshire, SC 88120-6700"
fake.text()
# Sint velit eveniet. Rerum atque repellat voluptatem quia rerum. Numquam excepturi
# beatae sint laudantium consequatur. Magni occaecati itaque sint et sit tempore. Nesciunt
# amet quidem. Iusto deleniti cum autem ad quia aperiam.
# A consectetur quos aliquam. In iste aliquid et aut similique suscipit. Consequatur qui
# quaerat iste minus hic expedita. Consequuntur error magni et laboriosam. Aut aspernatur
# voluptatem sit aliquam. Dolores voluptatum est.
# Aut molestias et maxime. Fugit autem facilis quos vero. Eius quibusdam possimus est.
# Ea quaerat et quisquam. Deleniti sunt quam. Adipisci consequatur id in occaecati.
# Et sint et. Ut ducimus quod nemo ab voluptatum.
Each call to method fake.name()
yields a different (random) result.
This is because faker forwards faker.Generator.method_name()
calls to faker.Generator.format(method_name)
.
for i in range(0,10):
print fake.name()
# Adaline Reichel
# Dr. Santa Prosacco DVM
# Noemy Vandervort V
# Lexi O'Conner
# Gracie Weber
# Roscoe Johns
# Emmett Lebsack
# Keegan Thiel
# Wellington Koelpin II
# Ms. Karley Kiehn V
Each of the generator properties (like name
, address
, and lorem
) are called "fake".
A faker generator has many of them, packaged in "providers". Here is a list of the bundled formatters in the default locale.
faker.Factory
can take a locale as an argument, to return localized data.
If no localized provider is found, the factory falls back to the default en_US locale.
from faker import Factory
fake = Factory.create('it_IT')
for i in range(0,10):
print fake.name()
> Elda Palumbo
> Pacifico Giordano
> Sig. Avide Guerra
> Yago Amato
> Eustachio Messina
> Dott. Violante Lombardo
> Sig. Alighieri Monti
> Costanzo Costa
> Nazzareno Barbieri
> Max Coppola
You can check available Faker locales in the source code, under the providers package. The localization of Faker is an ongoing process, for which we need your help. Please don't hesitate to create a localized provider for your own locale and submit a Pull Request (PR).
Included localized providers:
- bg_BG
- cs_CZ
- de_DE
- dk_DK
- el_GR
- en_CA
- en_GB
- en_US
- es_ES
- es_MX
- fa_IR
- fi_FI
- fr_FR
- hi_IN
- it_IT
- ko_KR
- lt_LT
- lv_LV
- nl_NL
- pl_PL
- pt_BR
- ru_RU
- zh_CN
- zh_TW
When installed, you can invoke faker from the command-line:
faker [-h] [--version] [-o output]
[-l {bg_BG,cs_CZ,...,zh_CN,zh_TW}]
[-r REPEAT] [-s SEP]
[fake [fake ...]]
Where:
-
faker
: is the script when installed in your environment, in development you could usepython -m faker
instead -
-h
,--help
: shows a help message -
--version
: shows the program's version number -
-o FILENAME
: redirects the output to the specified filename -
-l {bg_BG,cs_CZ,...,zh_CN,zh_TW}
: allows use of a localized provider -
-r REPEAT
: will generate a specified number of outputs -
-s SEP
: will generate the specified separator after each generated output -
fake
: is the name of the fake to generate an output for, such asname
,address
, ortext
-
[fake ...]
: is an optional comma-separated list of field names to pass to the fake, such asssn,birthday
when theprofile
fake is used
Examples:
$ faker address
968 Bahringer Garden Apt. 722
Kristinaland, NJ 09890
$ faker -l de_DE address
Samira-Niemeier-Allee 56
94812 Biedenkopf
$ faker profile ssn,birthdate
{'ssn': u'628-10-1085', 'birthdate': '2008-03-29'}
$ faker -r=3 -s=";" name
Willam Kertzmann
;
Josiah Maggio
;
Gayla Schmitt
;
from faker import Faker
fake = Faker()
# first, import a similar Provider or use the default one
from faker.providers import BaseProvider
# create new provider class
class MyProvider(BaseProvider):
def foo(self):
return 'bar'
# then add new provider to faker instance
fake.add_provider(MyProvider)
# now you can use:
fake.foo()
> 'bar'
import factory
from faker import Factory as FakerFactory
from myapp.models import Book
faker = FakerFactory.create()
class Book(factory.Factory):
FACTORY_FOR = Book
title = factory.LazyAttribute(lambda x: faker.sentence(nb_words=4))
author_name = factory.LazyAttribute(lambda x: faker.name())
You may want to get always the same generated data - for instance when using Faker for unit testing purposes.
The generator offers a seed()
method, which seeds the random number generator.
Calling the same script twice with the same seed produces the same results.
from faker import Faker
fake = Faker()
fake.seed(4321)
print fake.name() # Margaret Boehm
Run tests:
$ python setup.py test
or
$ python -m unittest -v faker.tests
Write documentation for providers:
$ python -m faker > docs.txt
Faker is released under the MIT Licence. See the bundled LICENSE file for details.