/ANNAVQA-pytorch

Attention-Guided Neural Networks for Full-Reference and No-Reference Audio-Visual Quality Assessment

Primary LanguagePythonApache License 2.0Apache-2.0

Attention-Guided Neural Networks for Full-Reference and No-Reference Audio-Visual Quality Assessment

License

Description

ANNAVQA code for the following papers:

  • Y. Cao, X. Min, W. Sun and G. Zhai, "Attention-Guided Neural Networks for Full-Reference and No-Reference Audio-Visual Quality Assessment," in IEEE Transactions on Image Processing, vol. 32, pp. 1882-1896, 2023, doi: 10.1109/TIP.2023.3251695.
  • Y. Cao, X. Min, W. Sun and G. Zhai, "Deep Neural Networks For Full-Reference And No-Reference Audio-Visual Quality Assessment," 2021 IEEE International Conference on Image Processing (ICIP), 2021, pp. 1429-1433, doi: 10.1109/ICIP42928.2021.9506408.

Train models

  1. Download the LIVE-SJTU Database

  2. Saliency Detection You should first run sal_position.m in Matlab to get SJTU_position.mat. You need to modify the databasePath into your save path of the LIVE-SJTU Database.

    cd Saliency model
    sal_model
    
  3. Extract video features

    cd train
    python video_CNNFeatures.py
    
  4. Extract audio features

    cd train
    python audio_CNNFeatures.py
    
  5. Train the FR model

    cd train
    python ANNAVQA_ref.py
    
  6. Train the NR model

    cd train
    python ANNAVQA_noref.py